【題目】已知四棱錐,底面為菱形, 為上的點,過的平面分別交于點,且平面.
(1)證明: ;
(2)當(dāng)為的中點, , 與平面所成的角為,求平面AMHN與平面ABCD所成銳二面角的余弦值.
【答案】(1)見解析;(2) .
【解析】試題分析:
(1)連交于點,連,則得,進(jìn)而可得平面,于是.由線面平行的性質(zhì)可得,所以得.(2)由條件可得兩兩垂直,建立空間直角坐標(biāo)系,然后分別求出平面AMHN與平面ABCD的法向量,通過兩法向量的夾角的余弦值可得所求.
試題解析:
(1)證明:連交于點,連.
因為四邊形為菱形,
所以,且為、的中點.
因為,
所以,
又且平面,
所以平面,
因為平面,
所以.
因為平面, 平面,平面平面,
所以,
所以.
(2)由(1)知且,
因為,且為的中點,
所以,
又,
所以平面,
所以與平面所成的角為,
所以,
因為,
所以.
分別以為軸,建立如圖所示空間直角坐標(biāo)系.
設(shè),則
,
所以
設(shè)平面的法向量為,
則,令,得.
由題意可得平面的法向量為,
所以.
所以平面AMHN與平面ABCD所成銳二面角的余弦值為.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè),,…,是1,2,…,的一個排列,把排在的左邊且比小的數(shù)的個數(shù)稱為的順序數(shù),如在排列6,4,5,3,2,1中,5的順序數(shù)為1,3的順序數(shù)為0,則在1至8這8個數(shù)的排列中,8的順序數(shù)為2,7的順序數(shù)為3,5的順序數(shù)為3的不同排列的種數(shù)為
A. 96B. 144C. 192D. 240
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在棱長均相等的四棱錐中, 為底面正方形的中心, ,分別為側(cè)棱,的中點,有下列結(jié)論正確的有:( )
A.∥平面B.平面∥平面
C.直線與直線所成角的大小為D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,圖①是棱長為1的小正方體,圖②,③是由這樣的小正方體擺放而成.按照這樣的方法繼續(xù)擺放,由上而下分別將第1層,第2層,…,第層的小正方體的個數(shù)記為,解答下列問題:
(1)按照要求填表:
1 | 2 | 3 | 4 | … | |
1 | 3 | 6 | _ | … |
(2)__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甲、乙、丙3位大學(xué)生同時應(yīng)聘某個用人單位的職位,甲、乙兩人只有一人被選中的概率為,兩人都被選中的概率為,丙被選中的概率為,且三人各自能否被選中互不影響.
(1)求3人同時被選中的概率;
(2)求恰好有2人被選中的概率;
(3)求3人中至少有1人被選中的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】給出下列兩組數(shù)據(jù):甲:12,13,11,10,14.乙:10,17,10,13,10.
(1)分別計算兩組數(shù)據(jù)的平均差,并根據(jù)計算結(jié)果判斷哪組數(shù)據(jù)波動大.
(2)分別計算兩組數(shù)據(jù)的方差,并根據(jù)計算結(jié)果判斷哪組數(shù)據(jù)波動大.
(3)以上兩種判斷方法的結(jié)果是否一致?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若一個函數(shù)當(dāng)自變量在不同范圍內(nèi)取值時,函數(shù)表達(dá)式不同,我們稱這樣的函數(shù)為分段函數(shù).下面我們參照學(xué)習(xí)函數(shù)的過程與方法,探究分段函數(shù)的圖象與性質(zhì).列表:
x | … | 0 | 1 | 2 | 3 | … | |||||||||
y | … | 1 | 2 | 1 | 0 | 1 | 2 | … |
描點:在平面直角坐標(biāo)系中,以自變量x的取值為橫坐標(biāo),以相應(yīng)的函數(shù)值y為縱坐標(biāo),描出相應(yīng)的點,如圖所示.
(1)如圖,在平面直角坐標(biāo)系中,觀察描出的這些點的分布,作出函數(shù)圖象;
(2)研究函數(shù)并結(jié)合圖象與表格,回答下列問題:
①點,,,在函數(shù)圖象上, , ;(填“>”,“=”或“<”)
②當(dāng)函數(shù)值時,求自變量x的值;
③在直線的右側(cè)的函數(shù)圖象上有兩個不同的點,,且,求的值;
④若直線與函數(shù)圖象有三個不同的交點,求a的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com