函數(shù)的定義域為,值域為,則的取值范圍是_________.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

2.正方形ABCD沿對角線BD將△ABD折起,使A點至P點,連PC.已知二面角P-BD-C的大小為θ,則下列結(jié)論錯誤的是( 。
A.若θ=90°,則直線PB與平面BCD所成角大小為45°
B.若直線PB與平面BCD所成角大小為45°,則θ=90°
C.若θ=60°,則直線BD與PC所成角大小為90°
D.若直線BD與PC所成角大小為90°,則θ=60°

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.如圖,在直三棱柱ABC-A1B1C1中,點D是BC的中點,AB⊥AC,AB=AC=AA1=2.
(1)求證:A1B∥平面ADC1
(2)求二面角B1-AD-C1的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.已知函數(shù)f(x)=a-|x-1|-|x+1|.
(Ⅰ)當a=6時,求不等式f(x)>3的解集;
(Ⅱ)若二次函數(shù)y=x2+2x+3與函數(shù)y=f(x)的圖象恒有公共點,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.如圖所示,在直三棱柱ABC-A1B1C1中,已知CA⊥CB,CA=CB=1,AA1=2,且棱AA1和A1B1的中點分別是M,N.
(1)求BM的長;
(2)求直線A1B和直線B1C夾角的余弦值;
(3)求證:直線A1B⊥直線C1N.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.已知函數(shù)f(x)=x+1-eax(a∈R)
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)當$x∈[\frac{1}{a},\frac{2}{a}]$時,$f(x)≥f(\frac{2}{a})$,求a的取值范圍;
(3)證明:?t∈[-1,1],使得f(t)<0.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

1.設(shè)O、F分別是拋物線y2=2x的頂點和焦點,M是拋物線上的動點,則$\frac{|MO|}{|MF|}$的最大值為$\frac{2\sqrt{3}}{3}$..

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

17.已知函數(shù)f(x)=ax2+x2(a∈R)在x=-2處取得極值,則a的值為$\frac{1}{3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

17.若下列方程:x2+4ax-4a+3=0,x2+2ax-2a=0,x2+(a-1)x+a2=0至少有一個方程有實根,則實數(shù)a的取值范圍為{a|a≥-1或a≤-$\frac{3}{2}$}..

查看答案和解析>>

同步練習冊答案