化簡:
AB
-
AC
-
DB
=
 
考點:向量的加法及其幾何意義,向量的減法及其幾何意義
專題:平面向量及應(yīng)用
分析:利用向量的三角形法則即可得出.
解答: 解:
AB
-
AC
-
DB
=
CB
+
BD
=
CD

故答案為:
CD
點評:本題考查了向量的三角形法則,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓E:
x2
a2
+
y2
b2
=1(a>b>0)的右焦點F,y軸右側(cè)的點A在橢圓E上運動,直線MA與圓C:x2+y2=b2相切于點M(x0,y0).
(1)求直線MA的方程;
(2)求證:|AF|+|AM|為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a>0,b>0,c>0,且ab=1,a2+b2+c2=4,則ab+bc+ac的最大值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

方程(x-2)2+|x2-5x+6|=0的解集是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,A、B分別是射線OM,ON上的兩點,給出下列向量:
OA
+2
OB
;②
1
2
OA
+
1
3
OB
;③
3
4
OA
+
1
3
OB
;④
3
4
OA
+
1
5
OB
;⑤
3
4
OA
-
1
5
OB
這些向量中以O(shè)為起點,終點在陰影區(qū)域內(nèi)的是
 
.(填序號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,過雙曲線x2-
y2
4
=1的右焦點作直線l與圓x2+y2=4相切于點M,l與雙曲線交于點P,則
|PM|
|PF|
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若關(guān)于x的不等式(組)0≤x2-
1
3
x-
2n
(2n+1)2
2
9
任意n∈N*恒成立,則所有這樣的解x的集合是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求值:
(a+b)2
+|b-a|+|
3a3
-
3b3
|=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(理科)已知A、B、C三點不共線,O是平面ABC外的一點,點P在平面ABC內(nèi),且滿足
OP
=
OA
+
OB
+m
OC
,則實數(shù)m的值為( 。
A、1B、-1C、2D、-2

查看答案和解析>>

同步練習(xí)冊答案