分析 設(shè)AB=AC=2x,三角形的頂角θ,則由余弦定理求得cosθ的表達(dá)式,進(jìn)而根據(jù)同角三角函數(shù)基本關(guān)系求得sinθ,最后根據(jù)三角形面積公式表示出三角形面積的表達(dá)式,根據(jù)一元二次函數(shù)的性質(zhì)求得面積的最大值時(shí)的x即可.
解答 解:設(shè)AB=AC=2x,AD=x.
設(shè)三角形的頂角θ,則由余弦定理得cosθ=$\frac{({2x)}^{2}+{x}^{2}-81}{2×2x•x}$=$\frac{5{x}^{2}-81}{4{x}^{2}}$,
∴sinθ=$\sqrt{1-{cos}^{2}θ}$=$\sqrt{1-{(\frac{5{x}^{2}-81}{4{x}^{2}})}^{2}}$=$\sqrt{\frac{-9{x}^{4}+810{x}^{2}-{81}^{2}}{({4{x}^{2})}^{2}}}$=$\frac{3\sqrt{-({{x}^{2}-45)}^{2}+{45}^{2}-729}}{4{x}^{2}}$,
根據(jù)公式三角形面積S=$\frac{1}{2}$absinθ=$\frac{1}{2}$×2x•2x•$\frac{3\sqrt{-{({x}^{2}-45)}^{2}+{45}^{2}-729}}{4{x}^{2}}$=$\frac{3\sqrt{-{({x}^{2}-45)}^{2}+{45}^{2}-729}}{2}$,
∴當(dāng) x2=45時(shí),三角形面積有最大值.此時(shí)x=3$\sqrt{5}$.
AB的長(zhǎng):6$\sqrt{5}$.
故答案為:6$\sqrt{5}$.
點(diǎn)評(píng) 本題主要考查函數(shù)最值的應(yīng)用,根據(jù)條件設(shè)出變量,根據(jù)三角形的面積公式以及三角函數(shù)的關(guān)系是解決本題的關(guān)鍵,利用二次函數(shù)的性質(zhì)即可求出函數(shù)的最值,考查學(xué)生的運(yùn)算能力.運(yùn)算量較大.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | {-3,1} | B. | {-3,1,3} | C. | {-2,1,3} | D. | {-3,2} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 9$\sqrt{3}$ | B. | 9$\sqrt{5}$ | C. | 6$\sqrt{3}$ | D. | 6$\sqrt{5}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com