20.設(shè)點P,Q分別是曲線f(x)=x2-lnx和直線x-y-2=0上的動點,則P,Q兩點間的距離的最小值為$\sqrt{2}$.

分析 當(dāng)曲線上過點P的切線和直線x-y-2=0平行時,點P到直線x-y-2=0的距離最小,求出曲線對應(yīng)的函數(shù)的導(dǎo)數(shù),令導(dǎo)數(shù)值等于1,可得切點的坐標(biāo),此切點到直線x-y-2=0的距離即為所求.

解答 解:當(dāng)過點P的切線和直線x-y-2=0平行時,點P到直線x-y-2=0的距離最。
由題意可得,f′(x)=2x-$\frac{1}{x}$=1,
∴x=1,
∴f(1)=1,
∴曲線f(x)=x2-lnx和直線x-y-2=0平行的切線經(jīng)過的切點坐標(biāo)(1,1),
點(1,1)到直線x-y-2=0的距離d=$\frac{|1-1-2|}{\sqrt{2}}$=$\sqrt{2}$,
∴P,Q兩點間的距離的最小值為$\sqrt{2}$,
故答案為:$\sqrt{2}$.

點評 本題考查點到直線的距離公式的應(yīng)用,函數(shù)的導(dǎo)數(shù)的求法及導(dǎo)數(shù)的意義,體現(xiàn)了轉(zhuǎn)化的數(shù)學(xué)思想,同時考查了分析問題的能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.在三角形ABC中,∠A=30°,∠C=90°,在∠ACB內(nèi)部任意作一條射線CM,與線段AB交于點M,則AM<AC的概率( 。
A.$\frac{1}{2}$B.$\frac{\sqrt{2}}{2}$C.$\frac{\sqrt{3}}{2}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.記min{a,b}表示a,b中較小的數(shù),比如min{3,-1}=-1.設(shè)函數(shù)$f(x)=|{min\left\{{{x^2},{{log}_{\frac{1}{12}}}x}\right\}}|({x>0})$,若f(x1)=f(x2)=f(x3)(x1、x2、x3互不相等),則x1x2x3的取值范圍為(0,$\frac{1}{2}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知函數(shù)g(x)=Asin(ωx+φ)(其中A>0,|φ|<$\frac{π}{2}$,ω>0)的圖象如圖所示,函數(shù)$f(x)=g(x)+\frac{{\sqrt{3}}}{2}cos2x-\frac{3}{2}sin2x$
(1)如果${x_1},{x_2}∈(-\frac{π}{6},\frac{π}{3})$,且g(x1)=g(x2),求g(x1+x2)的值;
(2)當(dāng)$x∈[-\frac{π}{6},\frac{π}{3}]$時,求函數(shù)f(x)的最大值、最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知f(x)是定義在R上的奇函數(shù),且x<0時,f(x)=x2-$\frac{2}{x}$.
(1)求f(0),f(1)的值;
(2)求f(x)的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.在△ABC中,角A,B,C所對邊分別為a,b,c,若p:a2+b2<c2,q:△ABC是鈍角三角形,則p是q的(  )條件.
A.充分非必要B.必要非充分
C.充要條件D.既不充分也不必要

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.設(shè)M為△ABC的重心,則$\overrightarrow{AM}$=(  )
A.$\frac{1}{2}(\overrightarrow{AC}-\overrightarrow{AB})$B.$\frac{1}{2}(\overrightarrow{AB}+\overrightarrow{AC})$C.$\frac{1}{3}(\overrightarrow{AC}-\overrightarrow{AB})$D.$\frac{1}{3}(\overrightarrow{AB}+\overrightarrow{AC})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.某初級中學(xué)領(lǐng)導(dǎo)采用系統(tǒng)抽樣方法,從該校800名學(xué)生中抽50名學(xué)生做牙齒健康檢查.現(xiàn)將800名學(xué)生從1到800進(jìn)行編號,求得間隔數(shù)k=16,即每16人抽取一個人.在1~16中隨機(jī)抽取一個數(shù),如果抽到的是7,則從65~80這16個數(shù)中應(yīng)取的數(shù)是(  )
A.71B.68C.69D.70

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.下列命題中正確的個數(shù)是( 。
(1)若直線a不平行于平面α且a?α,則α內(nèi)不存在與a平行的直線
(2)若直線a,b?α,且a∥β,b∥β,則α∥β
(3)若直線l上有無數(shù)個點不在平面α內(nèi),則l∥α.
(4)若平面α與平面β相交,則他們有無窮個公共點.
A.0B.1C.2D.3

查看答案和解析>>

同步練習(xí)冊答案