分析 先確定函數(shù)的定義域然后求導(dǎo)數(shù)fˊ(x),在函數(shù)的定義域內(nèi)解不等式f′(x)>0和f′(x)<0.
解答 解:函數(shù)f(x)=x3-kx2+x(x∈R),當(dāng)k=1時,f(x)=x3-x2+x,
f′(x)=3x2-2x+1,
由f′(x)>0,得x∈R,
故函數(shù)的單調(diào)遞增區(qū)間為:(-∞,+∞);
由f'(x)<0得x∈∅.
故答案為:單調(diào)增區(qū)間:R.
點(diǎn)評 本題主要考查利用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性的步驟:(1)確定 的定義域;(2)求導(dǎo)數(shù)fˊ(x);(3)在函數(shù) 的定義域內(nèi)解不等式fˊ(x)>0和fˊ(x)<0(4)確定 的單調(diào)區(qū)間.若在函數(shù)式中含字母系數(shù),往往要分類討論.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 命題“若a>b>0,則$\frac{1}{a}<\frac{1}$”的逆命題是真命題 | |
B. | 命題p:?x∈R,2x>0,則¬p:?x0∈R,2x0<0 | |
C. | “a>1,b>1”是“ab>1”成立的充分條件 | |
D. | “a>b”是“a2>b2”成立的充分不必要條件 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | f(a+1)>f(2-b) | B. | f(a+1)=f(2-b) | C. | f(a+1)<f(2-b) | D. | 不能確定 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com