分析 (1)取AB的中點E,通過圓C與x軸相切于點T,利用弦心距、半徑與半弦長之間的關系,計算即可;
(2)設M(cosα,sinα),N(cosβ,sinβ),計算出$\frac{|MA|}{|MB|}$、$\frac{|NA|}{|NB|}$、$\frac{|NB|}{|NA|}$的值即可.
解答 解:(1)∵圓C與x軸相切于點T(1,0),
∴圓心的橫坐標x=1,取AB的中點E,
∵|AB|=2,∴|BE|=1,
則|BC|=$\sqrt{2}$,即圓的半徑r=|BC|=$\sqrt{2}$,
∴圓心C(1,$\sqrt{2}$),
則圓的標準方程為(x-1)2+(y-$\sqrt{2}$)2=2,
故答案為:(x-1)2+(y-$\sqrt{2}$)2=2.
(2)∵圓心C(1,$\sqrt{2}$),∴E(0,$\sqrt{2}$),
又∵|AB|=2,且E為AB中點,
∴A(0,$\sqrt{2}$-1),B(0,$\sqrt{2}$+1),
∵M、N在圓O:x2+y2=1上,
∴可設M(cosα,sinα),N(cosβ,sinβ),
∴|NA|=$\sqrt{(cosβ-0)^{2}+[sinβ-(\sqrt{2}-1{)]}^{2}}$
=$\sqrt{co{s}^{2}β+si{n}^{2}β-2(\sqrt{2}-1)sinβ+3-2\sqrt{2}}$
=$\sqrt{4-2\sqrt{2}-2(\sqrt{2}-1)sinβ}$
=$\sqrt{2\sqrt{2}(\sqrt{2}-1)-2(\sqrt{2}-1)sinβ}$
=$\sqrt{2(\sqrt{2}-1)(\sqrt{2}-sinβ)}$,
|NB|=$\sqrt{(cosβ-0)^{2}+[sinβ-(\sqrt{2}+1)]^{2}}$
=$\sqrt{co{s}^{2}β+si{n}^{2}β-2(\sqrt{2}+1)sinβ+3+2\sqrt{2}}$
=$\sqrt{4+2\sqrt{2}-2(\sqrt{2}+1)sinβ}$
=$\sqrt{2(\sqrt{2}+1)(\sqrt{2}-sinβ)}$,
∴$\frac{|NA|}{|NB|}$=$\sqrt{\frac{2(\sqrt{2}-1)(\sqrt{2}-sinβ)}{2(\sqrt{2}+1)(\sqrt{2}-sinβ)}}$=$\sqrt{\frac{\sqrt{2}-1}{\sqrt{2}+1}}$=$\sqrt{2}-1$,
同理可得$\frac{|MA|}{|MB|}$=$\sqrt{2}-1$,
∴$\frac{|NA|}{|NB|}$=$\frac{|MA|}{|MB|}$,①成立,
$\frac{|NB|}{|NA|}$-$\frac{|MA|}{|MB|}$=$\frac{1}{\sqrt{2}-1}$-($\sqrt{2}-1$)=2,②正確.
$\frac{|NB|}{|NA|}$+$\frac{|MA|}{|MB|}$=$\frac{1}{\sqrt{2}-1}$+($\sqrt{2}-1$)=$2\sqrt{2}$,③正確.
故答案為:①②③.
點評 本題考查求圓的標準方程,用三角函數(shù)值表示單位圓上點的坐標是解決本題的關鍵,注意解題方法的積累,屬于難題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com