分析 連結(jié)CE,取CE中點(diǎn)G,連結(jié)FG、BG,則FG∥OE,∠BFG是0E與BF所成角,由此利用余弦定理能求出0E與BF所成角的余弦值.
解答 解:連結(jié)CE,取CE中點(diǎn)G,連結(jié)FG、BG,
∵空間四邊形OABC各邊及對角線長都相等,E,F(xiàn)分別為AB,OC的中點(diǎn),
∴FG∥OE,∴∠BFG是0E與BF所成角,
設(shè)AB=2,則OE=CE=BF=$\sqrt{{2}^{2}-{1}^{2}}$=$\sqrt{3}$,
GF=EG=$\frac{1}{2}OE=\frac{\sqrt{3}}{2}$,
BG=$\sqrt{G{E}^{2}+B{E}^{2}}$=$\sqrt{(\frac{\sqrt{3}}{2})^{2}+{1}^{2}}$=$\frac{\sqrt{7}}{2}$,
∴cos∠BFG=$\frac{B{F}^{2}+F{G}^{2}-B{G}^{2}}{2×BF×FG}$=$\frac{3+\frac{3}{4}-\frac{7}{4}}{2×\sqrt{3}×\frac{\sqrt{3}}{2}}$=$\frac{2}{3}$.
∴0E與BF所成角的余弦值為$\frac{2}{3}$.
點(diǎn)評 本題考查異面直線所成角的余弦值的求法,是中檔題,解題時要認(rèn)真審題,注意余弦定理的合理運(yùn)用.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 4 | B. | 28 | C. | 37 | D. | 81 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com