在△ABC中,AB=4,AC=3,BC邊的垂直平分線交AB于點P,則
AP
BC
的值為(  )
A、7
B、
7
2
C、-7
D、-
7
2
考點:平面向量數(shù)量積的運算
專題:平面向量及應(yīng)用
分析:取BC的中點D,由題意根據(jù)兩個向量的運算法則及其意義,把要求的式子化為(
AB
+
AC
2
+
DP
)•(
AC
-
AB
),再利用兩個向量垂直的性質(zhì)及向量的運算法則,可得結(jié)果.
解答: 解:△ABC中,AB=4,AC=3,取BC的中點D,
由條件得
AP
BC
=(
AD
+
DP
)•(
AC
-
AB
)=(
AB
+
AC
2
+
DP
)•(
AC
-
AB
)=
AC
2
-
AB
2
2
+
DP
BC
=
32-42
2
+0=-
7
2
,
故選:D.
點評:本題考查兩個向量的運算法則及其意義,兩個向量垂直的性質(zhì),屬于基礎(chǔ)題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知A(1,0,0),B(0,1,0),C(0,0,2).
(1)若
DB
AC
,
DC
AB
,求點D的坐標;
(2)問是否存在實數(shù)α,β,使得
AC
AB
BC
成立?若存在,求出α,β的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=sin x+cos x,x∈(0,2π).
(1)求x0,使f′(x0)=0;
(2)解釋(1)中x0及f′(x0)的意義.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

方程(
1
2
x=|log 
1
2
x|的實根的個數(shù)為( 。
A、1個B、2個C、3個D、4個

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=a(sinx-cosx)-2sinxcosx,x∈R,a是常數(shù).
(1)當a=0時,判斷f(1)和f(
3
2
)的大小,并說明理由;
(2)求函數(shù)f(x)的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知p:“直線x+y-m=0與圓(x-1)2+y2=1相交”,q:“m2-4m<0”若p∪q為真命題,¬p為真命題,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若直線x-ay+1=0經(jīng)過拋物線y=
1
4
x2的焦點,則實數(shù)a=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)數(shù)列{an}的前n項個為Sn,且Sn=2an-2(n=1,2,…).
(Ⅰ)寫出a1,a2的值,并求出數(shù)列{an}的通項公式;
(Ⅱ)若數(shù)列{bn}滿足bn+1=bn+an(n=1,2,…),b1=1,求數(shù)列{bn}的通項公式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的焦距為4,其長軸長和短軸長之比為
3
:1.
(Ⅰ)求橢圓C的標準方程;
(Ⅱ)設(shè)F為橢圓C的右焦點,T為直線x=t(t∈R,t≠2)上縱坐標不為0的任意一點,過F作TF的垂線交橢圓C于點P,Q.
(。┤鬙T平分線段PQ(其中O為坐標原點),求t的值;
(ⅱ)在(。┑臈l件下,當
|TF|
|PQ|
最小時,求點T的坐標.

查看答案和解析>>

同步練習冊答案