16.用反證法證明:命題“若x2+y2=0,則x=y=0”為真時(shí),假設(shè)的內(nèi)容應(yīng)為x,y不都為0.

分析 根據(jù)用反證法證明數(shù)學(xué)命題的方法,應(yīng)先假設(shè)要證命題的否定成立,求得要證命題的否定,可得答案.

解答 解:根據(jù)用反證法證明數(shù)學(xué)命題的方法,應(yīng)先假設(shè)要證命題的否定成立,
而要證命題的否定為“x,y不都為0”,
故答案為:x,y不都為0.

點(diǎn)評(píng) 本題主要考查用反證法證明數(shù)學(xué)命題的方法和步驟,求一個(gè)命題的否定,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.對(duì)任意實(shí)數(shù)$x,y,z,\sqrt{{x^2}+{y^2}+{z^2}}+\sqrt{{{(x+\sqrt{2})}^2}+{{(y-5)}^2}+{{(z-3)}^2}}$的最小值為6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.已知雙曲線$\frac{x^2}{4}-\frac{y^2}{3}=1$的左右焦點(diǎn)分別為F1,F(xiàn)2,O為坐標(biāo)原點(diǎn),P為雙曲線右支上一點(diǎn),△F1PF2的內(nèi)切圓的圓心為Q,過(guò)F2作PQ的垂線,垂足為B,則OB的長(zhǎng)度為( 。
A.$\sqrt{7}$B.4C.3D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.如圖,雙曲線C:$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a,b>0)虛軸上的端點(diǎn)B(0,b),右焦點(diǎn)F,若以B為圓心的圓與C的一條漸近線相切于點(diǎn)P,且$\overrightarrow{BP}$∥$\overrightarrow{PF}$,則該雙曲線的離心率為$\frac{1+\sqrt{5}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.如圖,正三棱柱ABC-A1B1C1中,AB=4,AA1=6.若E,F(xiàn)分別是棱BB1,CC1上的點(diǎn),則三棱錐A-A1EF的體積是8$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.過(guò)原點(diǎn)的直線l與雙曲線$\frac{x^2}{9}-\frac{y^2}{3}=-1$有兩個(gè)交點(diǎn),則直線l的斜率的取值范圍是( 。
A.$({-\frac{{\sqrt{3}}}{3},\frac{{\sqrt{3}}}{3}})$B.$({-∞,-\frac{{\sqrt{3}}}{3}})∪({\frac{{\sqrt{3}}}{3},+∞})$C.$[{-\frac{{\sqrt{3}}}{3},\frac{{\sqrt{3}}}{3}}]$D.$({-∞,-\frac{{\sqrt{3}}}{3}]∪[\frac{{\sqrt{3}}}{3},+∞})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.在四棱錐P-ABCD中,PA⊥底面ABCD,AB=AD=2,CB=CD=$\sqrt{7}$,∠BAD=120°,點(diǎn)E在線段AC上,且AE=2EC,F(xiàn)為線段PC的中點(diǎn).
(1)求證:EF∥平面PBD;
(2)若二面角B-PC-D的平面角的余弦值為$\frac{1}{5}$,求四棱錐P-ABCD的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,a1=2,若Sn+1=$\frac{n+2}{n}$Sn,則數(shù)列{$\frac{1}{{a}_{n}{a}_{n+1}}$}的前2016項(xiàng)和為$\frac{504}{2017}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.已知a>0,若方程$\frac{a}{x-a}$=$\sqrt{4ax-2{x}^{2}}$有實(shí)數(shù)解,則實(shí)數(shù)a的取值范圍為[$\sqrt{2}$,+∞).

查看答案和解析>>

同步練習(xí)冊(cè)答案