7.小明有4枚完全相同的硬幣,每個(gè)硬幣都分正反兩面.他把4枚硬幣疊成一摞(如圖),則所有相鄰兩枚硬幣中至少有一組同一面不相對(duì)的概率是$\frac{7}{8}$.

分析 小明有4枚完全相同的硬幣,他把4枚硬幣疊成一摞,先求出基本事件總數(shù),再求出所有相鄰兩枚硬幣中至少有一組同一面不相對(duì),包含的基本事件的個(gè)數(shù),由此能求出所有相鄰兩枚硬幣中至少有一組同一面不相對(duì)的概率.

解答 解:小明有4枚完全相同的硬幣,他把4枚硬幣疊成一摞,
基本事件總數(shù)n=24=16,
所有相鄰兩枚硬幣中至少有一組同一面不相對(duì),包含的基本事件的個(gè)數(shù)m=24-2=14,
∴所有相鄰兩枚硬幣中至少有一組同一面不相對(duì)的概率:
p=$\frac{m}{n}$=$\frac{{2}^{4}-2}{{2}^{4}}$=$\frac{7}{8}$.
故答案為:$\frac{7}{8}$.

點(diǎn)評(píng) 本題考查概率的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意等可能事件概率計(jì)算公式的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.定點(diǎn)P(a,b)在圓x2+y2+2x=1內(nèi),直線(a+1)x+by+a-1=0與圓x2+y2+2x=1的位置關(guān)系是( 。
A.相交B.相離C.相切D.不確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.已知直線y=a(x+1)-1上存在點(diǎn)(x,y)滿足$\left\{\begin{array}{l}{2x+y-2≥0}\\{x-2y+4≥0}\\{3x-y-3≤0}\end{array}\right.$,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.在△ABC的內(nèi)角A,B,C所對(duì)的邊分別為a,b,c,已知$\frac{a-b}{sin(A+B)}$=$\frac{a-c}{sinA+sinB}$,a=1.
(Ⅰ)求角B;
(Ⅱ)若△ABC的面積為$\sqrt{3}$,求b.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.直線$\left\{\begin{array}{l}x={x_0}+at\\ y={y_0}+bt\end{array}\right.$(t為參數(shù))上的兩個(gè)點(diǎn)A,B對(duì)應(yīng)參數(shù)分別為t1,t2,則|AB|=( 。
A.|t1-t2|B.$\sqrt{{a^2}+{b^2}}|{{t_1}-{t_2}}|$C.$\frac{{|{{t_1}-{t_2}}|}}{{\sqrt{{a^2}+{b^2}}}}$D.$\frac{{|{{t_1}-{t_2}}|}}{{{a^2}+{b^2}}}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.已知二次函數(shù)f(x)=ax2+bx+c(a,b,c∈R).
(1)若對(duì)任意實(shí)數(shù)x,不等式2x≤f(x)≤$\frac{1}{2}$(x+1)2恒成立,求f(-1)的取值范圍;
(2)當(dāng)a=1時(shí),對(duì)任意x1,x2∈[-1,1],恒有|f(x1)-f(x2)|≤4,求實(shí)數(shù)b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.設(shè)a<b,把函數(shù)y=h(x)的圖象與直線x=a,x=b及y=0所圍成圖形的面積與b-a的比值稱為函數(shù)y=h(x)在[a,b]上的“面積密度”
(I)設(shè)f(x)=x1nx-x,曲線y=f(x)與直線y=x+b相切,求b的值;
(II)設(shè)0<a<b,求μ的值(用a,b表示)使得函數(shù)g(x)=|lnx-lnμ|在區(qū)間(a,b)上的“面積密度”取得最小值;
(III)記(2)中的最小值為φ(a,b),求證:φ(a,b)<ln2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.已知△ABC三內(nèi)角A,B,C的對(duì)邊分別為a,b,c,若bcosA+acosB=-4ccosC,且c=$\sqrt{15}$.
(1)求cosC;
(2)求a+b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.近年來(lái)空氣污染是一個(gè)生活中重要的話題,PM2.5就是其中一個(gè)重要指標(biāo).各省、市、縣均要進(jìn)行實(shí)時(shí)監(jiān)測(cè),某市2015年11月的PM2.5濃度統(tǒng)計(jì)如圖所示.
日期PM2.5濃度日期PM2.5濃度日期PM2.5濃度
11-1 13711-1114411-2140
11-214311-1216611-2242
11-314511-1319711-2335
11-419311-1419411-2453
11-513311-1521911-2588
11-62211-164111-2629
11-72211-179011-27199
11-85711-184611-28287
11-911111-198011-29291
11-1013411-206711-30452
(1)請(qǐng)完成頻率分布表;
空氣質(zhì)量指數(shù)類別PM2.5 24小時(shí)濃度均值頻數(shù)頻率
優(yōu)0-354 $\frac{2}{15}$
36-757 $\frac{7}{30}$
輕度污染76-1154 
中度污染116-1506 
重度污染151-250  
嚴(yán)重污染251-500  
合計(jì)/301
(2)專家建議,空氣質(zhì)量為優(yōu)、良、輕度污染時(shí)可正常進(jìn)行戶外活動(dòng),中度污染及以上時(shí),取消一切戶外活動(dòng),在2015年11月份,該市某學(xué)校進(jìn)行了連續(xù)兩天的戶外拔河比賽,求拔河比賽能正常進(jìn)行的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案