cos(π+α)•sin2(-α)
sin(π+α)•cos2(-α)
=
1
2
,則tanα的值為
 
考點:運用誘導公式化簡求值
專題:三角函數(shù)的求值
分析:直接利用誘導公式化簡求解即可.
解答: 解:∵
cos(π+α)•sin2(-α)
sin(π+α)•cos2(-α)
=
1
2
,
cos(π+α)•sin2(-α)
sin(π+α)•cos2(-α)

=
-cosα•sin2α
-sinα•cos2α

=tanα=
1
2

故答案為:
1
2
點評:本題考查誘導公式的應用,三角函數(shù)的化簡求值,基本知識的考查.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知正方形OABC的四個頂點分別是0(0,0),A(1,0),B(1,1),C(0,1)設(shè)u=x2-y2,v=2xy是一個由平面xOy到平面uOv上的變換,則正方形OABC在這個變換下的圖形是( 。
A、
B、
C、
D、

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

化簡:sin(
4n-1
4
π-α)+cos(
4n+1
4
π-α)(n∈Z).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知集合A={x|x<-1或x>5},B={x|1<x+1<9},C={x|x>a},U=R.
(1)求∁UA,A∩B;
(2)若∁UA⊆C,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

求下列各式的值:
(1)sin
π
4
cos
19π
6
tan
21π
4
;
(2)sin 420°cos 330°+sin(-690°)cos(-660°).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知
a
=(1,2),
b
=(-2,-4),則
a
b
( 。
A、平行且反向
B、平行且同向
C、垂直
D、既不平行也不垂直

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

數(shù)列
1
1+
3
、
1
3
+
5
、
1
5
+
7
…的前n項和為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知A、B是拋物線y2=2px(p>0)上的兩點,且OA⊥OB(O為坐標原點),求證:
(1)A、B兩點的橫坐標之積為定值;
(2)直線AB經(jīng)過定點.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知sinα+cosα=
1
5

(1)求sinα•cosα的值
(2)若
π
2
<α<π,求
1
sinα
+
1
cos(π-α)
的值.

查看答案和解析>>

同步練習冊答案