9.執(zhí)行下圖的程序框圖,若輸入的a,b,k分別是2,1,3,則輸出的M=( 。
A.$\frac{4}{3}$B.$\frac{8}{5}$C.$\frac{15}{4}$D.$\frac{15}{8}$

分析 模擬程序框圖的運(yùn)行過程,即可得出輸出的M值.

解答 解:執(zhí)行程序框圖,如下:
a=2,b=1,k=3,n=1≤k,M=2+$\frac{1}{1}$=3;
a=1,b=3,n=2≤k,M=1+$\frac{1}{3}$=$\frac{4}{3}$;
a=3,b=$\frac{4}{3}$,n=3≤k,M=3+$\frac{1}{\frac{4}{3}}$=$\frac{15}{4}$;
a=$\frac{4}{3}$,b=$\frac{15}{4}$,n=4>k,輸出M=$\frac{15}{4}$.
故選:C.

點(diǎn)評(píng) 本題考查了程序框圖和算法的應(yīng)用問題,解題時(shí)應(yīng)模擬程序運(yùn)行的過程,是基本題目.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知△ABC的三個(gè)角A,B,C所對(duì)的邊分別為a,b,c,且a2+b2-ab=c2,則C=(  )
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{2π}{3}$D.$\frac{5π}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.在△ABC中,角A,B,C的對(duì)邊分別是a,b,c,向量$\overrightarrow{p}$=(a,2b-c),$\overrightarrow{q}$=(cosA,cosC),且$\overrightarrow{p}$∥$\overrightarrow{q}$
(1)求角A的大。
(2)設(shè)f(x)=cos(ωx-$\frac{A}{2}$)+sinωx(ω>0)且f(x)的最小正周期為π,求f(x)在區(qū)間[0,$\frac{π}{2}$]上的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.函數(shù)f(x)=$\sqrt{|x+1|+|x+2|-5}$.
(1)求函數(shù)f(x)的定義域A;
(2)設(shè)B={x|-1<x<2},當(dāng)實(shí)數(shù)a、b∈(B∩∁RA)時(shí),證明:$\frac{|a+b|}{2}<|1+\frac{ab}{4}$|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知t為常數(shù)且0<t<1,函數(shù)g(x)=$\frac{1}{2}$(x+$\frac{1-t}{x}$)(x>0),h(x)=$\sqrt{{x}^{2}-2x+2+t}$.
(1)求證:g(x)在(0,$\sqrt{1-t}$)上單調(diào)遞減,在($\sqrt{1-t}$,+∞)上單調(diào)遞增;
(2)若函數(shù)g(x)與h(x)的最小值恰為函數(shù)f(x)=x3+ax2+bx(a,b∈R)的兩個(gè)零點(diǎn),求a+b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知0≤α≤π,0≤β≤$\frac{π}{4}$,且α+β=$\frac{2π}{3}$,求y=$\frac{1-cos(π-2α)}{cot\frac{α}{2}-tan\frac{α}{2}}$-cos2($\frac{π}{4}$-β)的最大值,并求出相應(yīng)的α、β的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.求函數(shù)y=$\frac{sinx+1}{2sinx-1}$的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知函數(shù)f(x)=$\left\{\begin{array}{l}x+2,-2≤x≤-1\\{x}^{2},-1<x<2\\ 5-0.5x,2≤x≤3\end{array}\right.$,求該函數(shù)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.P是雙曲線$\frac{{x}^{2}}{3}$-y2=1的右支上一動(dòng)點(diǎn),F(xiàn)是雙曲線的右焦點(diǎn),已知A(3,1)
(1)求|PA|+|PF|的最小值;
(2)求|PA|-|PF|的最大值;
(3)求|PA|+$\frac{\sqrt{3}}{2}$|PF|的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案