【題目】在平面直角坐標系xOy中,已知拋物線C:x2=4y,點P是C的準線l上的動點,過點P作C的兩條切線,切點分別為A,B,則△AOB面積的最小值為( )
A.
B.2
C.2
D.4
【答案】B
【解析】解:如圖所示:拋物線C:x2=4y,準線l的方程y=﹣1,設(shè)P(x0 , ﹣1),A(x1 , y1),B(x2 , y2), 由y= x2 , 求導y′= x,
切線PA的方程為y﹣x1= x1(x﹣x1),即y= x1x﹣y1 ,
又切線PA過點P(x0 , ﹣1),﹣1= x1x0﹣y1 ,
整理得:x1x0﹣2y1+2=0,
同理切線PB的方程x2x0﹣2y2+2=0,
∴直線AB的方程為xx0﹣2y+2=0,
直線AB過定點F(0,1),
∴△AOB面積,S= 丨OF丨丨x1﹣x2丨= 丨x1﹣x2丨≥ ×4=2,
∴當且僅當直線AB⊥y軸時取等號,
∴△AOB面積的最小值2,
故選B.
科目:高中數(shù)學 來源: 題型:
【題目】設(shè)△ABC的內(nèi)角A、B、C的對邊分別為a、b、c,且滿足sinA+sinB=[cosA﹣cos(π﹣B)]sinC.
(1)試判斷△ABC的形狀,并說明理由;
(2)若a+b+c=1+ ,試求△ABC面積的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在四面體ABOC中,OC⊥OA,OC⊥OB,∠AOB=120°,且OA=OB=OC=1
(Ⅰ)設(shè)為P為AC的中點,Q為AB上一點,使PQ⊥OA,并計算 的值;
(Ⅱ)求二面角O﹣AC﹣B的平面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】假設(shè)每一架飛機的每一個引擎在飛行中出現(xiàn)故障概率均為,且各引擎是否有故障是獨立的,已知4引擎飛機中至少有3個引擎飛機正常運行,飛機就可成功飛行;2引擎飛機要2個引擎全部正常運行,飛機才可成功飛行.要使4引擎飛機比2引擎飛機更安全,則的取值范圍是__________.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】愛心超市計劃按月訂購一種酸奶,每天進貨量相同,進貨成本每瓶4元,售價每瓶6元,未售出的酸奶降價處理,以每瓶2元的價格當天全部處理完根據(jù)往年銷售經(jīng)驗,每天需求量與當天最高氣溫單位:有關(guān)如果最高氣溫不低于25,需求量為500瓶;如果最高氣溫位于區(qū)間,需求量為300瓶;如果最高氣溫低于20,需求量為200瓶為了確定六月份的訂購計劃,統(tǒng)計了前三年六月份每天的最高氣溫數(shù)據(jù),得到下面的頻數(shù)分布表:
最高氣溫 | ||||||
天數(shù) | 2 | 16 | 36 | 25 | 7 | 4 |
(1)求六月份這種酸奶一天的需求量不超過300瓶的頻率;
(2)當六月份有一天這種酸奶的進貨量為450瓶時,求這一天銷售這種酸奶的平均利潤(單位:元)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在△ABC中,內(nèi)角A,B,C所對的邊分別為a,b,c,且滿足sin2B+sin2C=sin2A+2sinBsinCsin(B+C). (Ⅰ)求角A的大小;
(Ⅱ)若a=2,求△ABC面積的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知圓過點,且圓心在直線上.
(1)求圓的方程;
(2)平面上有兩點,點是圓上的動點,求的最小值;
(3)若是軸上的動點,分別切圓于兩點,試問:直線是否恒過定點?若是,求出定點坐標,若不是,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=2|x+1|+|x﹣a|(a∈R).
(1)若 a=1,求不等式 f(x)≥5的解集;
(2)若函數(shù)f(x)的最小值為3,求實數(shù) a的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com