分析 由約束條件作出可行域,分類化目標函數為直線方程的斜截式,數形結合得到最優(yōu)解,把最優(yōu)解的坐標代入目標函數得答案.
解答 解:由約束條件$\left\{\begin{array}{l}x≥0\\ y≥0\\ x+2y-6≤0\\ 2x+y-6≤0\end{array}\right.$作出可行域如圖,
當x≥1,y≥0時,目標函數化為z=x+y+1,即y=-x+z-1,
∴當直線y=-x+z-1過(1,0)時,直線在y軸上的截距最小,z有最小值為2,當直線y=-x+z-1過(2,2)時,直線在y軸上的截距最大,z有最小值為5;
當0≤x<1,y≥0時,目標函數化為z=-x+y+3,即y=x+z-3,
當直線y=x+z-3過(1,0)時,直線在y軸上的截距最小,∴z>2,當直線y=x+z-3過(0,3)時,直線在y軸上的截距最大,z有最小值為6.
∴z=|x-1|+|y+2|的取值范圍為[2,6].
故答案為:[2,6].
點評 本題考查簡單的線性規(guī)劃,考查了數形結合的解題思想方法,是中檔題.
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 若命題p、q中至少有一個為真命題,則“p∧q”是真命題 | |
B. | 不等式ac2>bc2成立的充要條件是a>b | |
C. | “正四棱錐的底面是正方形”的逆命題是真命題 | |
D. | 若k>0,則方程x2+2x-k=0有實根 |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | $f(x)=\frac{{{x^2}+x}}{x+1}$與g(x)=x-1 | B. | f(x)=2|x|與$g(x)=\sqrt{4{x^2}}$ | ||
C. | $f(x)=\sqrt{x^2}$與$g(x)={(\sqrt{x})^2}$ | D. | $y=\sqrt{x+1}\sqrt{x-1}$與$y=\sqrt{{x^2}-1}$ |
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com