14.(1)已知a,b是常數(shù),且a>0,b>0,a≠b,x,y∈(0,+∞),且x+y=m.
求證:$\frac{a^2}{x}$+$\frac{b^2}{y}$≥$\frac{{{{(a+b)}^2}}}{m}$,并指出等號(hào)成立的條件;
(2)求函數(shù)f(x)=$\frac{12}{x}$+$\frac{9}{1-3x}$,x∈(0,$\frac{1}{3}$)的最小值.

分析 (1)利用基本不等式的性質(zhì)即可證明.
(2)利用上述結(jié)論即可得出.

解答 (1)證明:$(\frac{a^2}{x}+\frac{b^2}{y})m=(\frac{a^2}{x}+\frac{b^2}{y})(x+y)={a^2}+\frac{{{a^2}y}}{x}+\frac{{{b^2}x}}{y}+{b^2}≥{a^2}+2\sqrt{\frac{{{a^2}y}}{x}•\frac{{{b^2}x}}{y}}+{b^2}$
=a2+2ab+b2=(a+b)2,$\frac{a^2}{x}+\frac{b^2}{y}≥\frac{{(a+b{)^2}}}{m}$.
當(dāng)且僅當(dāng)$\frac{{{a^2}y}}{x}=\frac{{{b^2}x}}{y}$,即$\frac{a}=\frac{x}{y}$時(shí),等號(hào)成立.
(2)解:∵$x∈(0,\frac{1}{3})$,∴1-3x>0,
∴$f(x)=\frac{12}{x}+\frac{9}{1-3x}=(\frac{36}{3x}+\frac{9}{1-3x})•1=(\frac{6^2}{3x}+\frac{3^2}{1-3x})•[3x+(1-3x)]≥{(6+3)^2}=81$,
當(dāng)且僅當(dāng)$\frac{6}{3}=\frac{3x}{1-3x}$,即$x=\frac{2}{9}$時(shí),f(x)min=81.

點(diǎn)評(píng) 本題考查了基本不等式的性質(zhì)及其應(yīng)用、函數(shù)的最值,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知0<x<$\frac{5}{4}$,則x(5-4x)的最大值是$\frac{25}{16}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.函數(shù)f(x)=$\sqrt{{{log}_{\frac{3}{4}}}(2x-1)}$的定義域?yàn)?(\frac{1}{2},1]$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知等差數(shù)列{an}中,a3=7,a6=16,則a9=25.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.設(shè)實(shí)數(shù)x,y滿足$\left\{\begin{array}{l}x≥0\\ y≥0\\ x+2y-6≤0\\ 2x+y-6≤0\end{array}\right.$,則z=|x-1|+|y+2|的取值范圍為[2,6].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知f(x2-1)定義域?yàn)閇0,3],則 f(2x-1)的定義域?yàn)閇0,$\frac{9}{2}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.如圖,過正方體ABCD-A′B′C′D′的棱BB′作一平面交平面CDD′C′于EE′,則BB′與EE′的位置關(guān)系是( 。
A.平行B.相交C.異面D.不確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知函數(shù)y=f(x)在R上為奇函數(shù),且當(dāng)x≥0時(shí),f(x)=x2-2x,則f(-3)=-3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知函數(shù)f(x)=logax(a>0且a≠1),若f(9)=2,則實(shí)數(shù)a=3.

查看答案和解析>>

同步練習(xí)冊(cè)答案