【題目】綜合題。
(1)已知點(diǎn)A(﹣1,﹣2)和B(﹣3,6),直線l經(jīng)過(guò)點(diǎn)P(1,﹣5).且與直線AB平行,求直線l的方程
(2)求垂直于直線x+3y﹣5=0,且與點(diǎn)P(﹣1,0)的距離是 的直線m的方程.

【答案】
(1)解:∵A(﹣1,﹣2),B(﹣3,6),

∴kAB=﹣4,直線l又過(guò)點(diǎn)P(1,﹣5),

故直線方程是:y+5=﹣4(x﹣1),

即直線l的方程為:4x+y+1=0;


(2)解:∵直線x+3y﹣5=0,

由已知條件可得km=3,

則設(shè)直線m的方程為y=3x+b,

又與點(diǎn)P(﹣1,0)的距離是

,

得到b=9或﹣3,

∴直線m的方程為3x﹣y+9=0或3x﹣y﹣3=0.


【解析】(1)求出AB的斜率,代入點(diǎn)斜式方程整理即可;(2)求出直線m的斜率,設(shè)出直線方程,根據(jù)點(diǎn)到直線的距離,求出直線方程即可.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù) .

(1)討論的單調(diào)性;

(2)若,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在銳角△ABC中,a,b,c分別是三個(gè)內(nèi)角A,B,C的對(duì)邊,若2asinB= b. (Ⅰ)求A;
(Ⅱ)若a= ,△ABC的面積為 ,求△ABC的周長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知二次函數(shù)對(duì)任意實(shí)數(shù),都有恒成立.

(Ⅰ)證明: ;

(Ⅱ)若,求的表達(dá)式;

(Ⅲ)在題(Ⅱ)的條件下設(shè),若圖象上的點(diǎn)都位于直線的上方,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè){an}為等差數(shù)列,Sn是其前n項(xiàng)和,已知S7=7,S15=75,Tn為數(shù)列{ }的前n項(xiàng)和,
(1)求a1和d;
(2)求Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在△ABC中,內(nèi)角A,B,C對(duì)應(yīng)的邊分別為a,b,c(a≤b≤c),且bcosC+ccosB=2asinA. (Ⅰ)求角A;
(Ⅱ)求證:
(Ⅲ)若a=b,且BC邊上的中線AM長(zhǎng)為 ,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)f(x)= 若f(x)=x+a有且僅有三個(gè)解,則實(shí)數(shù)a的取值范圍是(
A.[1,2]
B.(﹣∞,2)
C.[1,+∞)
D.(﹣∞,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】△ABC的內(nèi)角A,B,C的對(duì)邊分別為a,b,c,已知2cosC(acosB+bcosA)=c.
(1)求角C;
(2)若 ,△ABC的面積為 ,求a+b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(1)當(dāng)時(shí),求函數(shù)的最值;

(2)當(dāng)時(shí),對(duì)任意都有恒成立,求實(shí)數(shù)的取值范圍;

(3)當(dāng)時(shí),設(shè)函數(shù),數(shù)列滿足, ,求證: .

查看答案和解析>>

同步練習(xí)冊(cè)答案