為了尋找馬航殘骸,我國“雪龍?zhí)枴笨瓶即?014年3月26日從港口出發(fā),沿北偏東角的射線方向航行,而在港口北偏東角的方向上有一個給科考船補給物資的小島,海里,且.現指揮部需要緊急征調位于港口正東海里的處的補給船,速往小島裝上補給物資供給科考船.該船沿方向全速追趕科考船,并在處相遇.經測算當兩船運行的航線與海岸線圍成的三角形的面積最小時,這種補給方案最優(yōu).
(1)求關于的函數關系式;
(2)應征調位于港口正東多少海里處的補給船只,補給方案最優(yōu)?
(1);(2)1400.
解析試題分析:(1)本題已知條件可以理解為是固定的,點也是不變,直線過點,要求面積的最小值,根據已知條件,我們用解析法來解題,以為坐標原點,向東方向為正半軸,向北方向為軸正半軸,建立直角坐標系,則可得直線的方程為,點坐標為,又有點坐標為,可得直線方程,它與直線的交點的坐標可解得,而,這樣要求的表達式就可得;(2)在(1)基礎上,,其最小值求法,把分式的分子分母同時除以,得,分母是關于的二次函數,最值易求.
試題解析:(1)以O點為原點,正北的方向為y軸正方向建立直角坐標系, (1分)
則直線OZ的方程為,設點A(x0,y0),則,,即A(900,600), (3分)
又B(m,0),則直線AB的方程為:, (4分)
由此得到C點坐標為:, (6分)
(8分)
(2)由(1)知 (10分)
(12分)
所以當,即時,最小,
(或令,則
,當且僅當時,最。
∴征調海里處的船只時,補給方案最優(yōu). (14分)
考點:解析法解應用題.
科目:高中數學 來源: 題型:解答題
請你設計一個包裝盒,如圖所示,是邊長為的正方形硬紙片,切去陰影部分所示的四個全等的等腰直角三角形,再沿虛線折起,使得四個點重合于圖中的點P,正好形成一個正四棱柱形狀的包裝盒,在上是被切去的等腰直角三角形斜邊的兩個端點,設.
(1)若廣告商要求包裝盒側面積最大,試問應取何值?
(2)若廣告商要求包裝盒容積最大,試問應取何值?并求出此時包裝盒的高與底面邊長的比值.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知函數常數)滿足.
(1)求出的值,并就常數的不同取值討論函數奇偶性;
(2)若在區(qū)間上單調遞減,求的最小值;
(3)在(2)的條件下,當取最小值時,證明:恰有一個零點且存在遞增的正整數數列,使得成立.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
(2011•湖北)(1)已知函數f(x)=lnx﹣x+1,x∈(0,+∞),求函數f(x)的最大值;
(2)設a1,b1(k=1,2…,n)均為正數,證明:
①若a1b1+a2b2+…anbn≤b1+b2+…bn,則…≤1;
②若b1+b2+…bn=1,則≤…≤b12+b22+…+bn2.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
設關于x函數 其中0
將f(x)的最小值m表示成a的函數m=g(a);
是否存在實數a,使f(x)>0在上恒成立?
是否存在實數a,使函數f(x) 在上單調遞增?若存在,寫出所有的a組成的集合;若不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
某公司承建扇環(huán)面形狀的花壇如圖所示,該扇環(huán)面花壇是由以點為圓心的兩個同心圓弧、弧以及兩條線段和圍成的封閉圖形.花壇設計周長為30米,其中大圓弧所在圓的半徑為10米.設小圓弧所在圓的半徑為米(),圓心角為弧度.
(1)求關于的函數關系式;
(2)在對花壇的邊緣進行裝飾時,已知兩條線段的裝飾費用為4元/米,兩條弧線部分的裝飾費用為9元/米.設花壇的面積與裝飾總費用的比為,當為何值時,取得最大值?
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
對于函數,若在定義域存在實數,滿足,則稱為“局部奇函數”.
(1)已知二次函數,試判斷是否為“局部奇函數”?并說明理由;
(2)設是定義在上的“局部奇函數”,求實數的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知函數f(x)=lg(ax-bx)(a>1>b>0).
(1)求函數y=f(x)的定義域;
(2)在函數y=f(x)的圖象上是否存在不同的兩點,使過此兩點的直線平行于x軸;
(3)當a、b滿足什么關系時,f(x)在區(qū)間上恒取正值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com