9.橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左、右焦點分別為F1、F2,過F1作圓${x^2}+{y^2}=\frac{{{{(a-b)}^2}}}{4}$的切線,切點為P,切線與橢圓交于點Q,若$\overrightarrow{O{F_1}}+\overrightarrow{OQ}=2\overrightarrow{OP}$,則橢圓的離心率為$\frac{{\sqrt{6}}}{3}$.

分析 如圖所示,$\overrightarrow{O{F_1}}+\overrightarrow{OQ}=2\overrightarrow{OP}$,可得切點P是線段QF1的中點,又|F1O|=|OF2|,利用三角形中位線定理可$|OP|=\frac{1}{2}|Q{F}_{2}|$,再利用橢圓的定義可得|PF1|,再利用勾股定理與離心率計算公式即可得出.

解答 解:如圖所示,
∵$\overrightarrow{O{F_1}}+\overrightarrow{OQ}=2\overrightarrow{OP}$,
∴切點P是線段QF1的中點,
又|F1O|=|OF2|,
∴$|OP|=\frac{1}{2}|Q{F}_{2}|$=$\frac{a-b}{2}$,
∴|QF2|=a-b,
∴|QF1|=2a-|QF2|=a+b,
∴|PF1|=$\frac{a+b}{2}$.
在Rt△OPF1中,
由勾股定理可得:${c}^{2}=(\frac{a-b}{2})^{2}+(\frac{a+b}{2})^{2}$,
化為2c2=a2+b2=2a2-c2,
∴$\frac{{c}^{2}}{{a}^{2}}=\frac{2}{3}$,解得$e=\frac{c}{a}$=$\frac{\sqrt{6}}{3}$.
故答案為:$\frac{{\sqrt{6}}}{3}$.

點評 本題考查了橢圓的標(biāo)準(zhǔn)方程及其性質(zhì)、三角形中位線定理、勾股定理、圓的切線的性質(zhì),考查了推理能力與計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.軸截面為正方形的圓柱叫做等邊圓柱,已知某等邊圓柱的軸截面面積為16cm2,求其底面周長和高.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.求函數(shù)y=2${\;}^{-{x}^{2}}$+3,(x<0)的反函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知傾斜角為$\frac{2π}{3}$的直線l過拋物線y=$\frac{1}{4}$x2的焦點,則直線l被圓x2+y2+4y-5=0截得的弦長為3$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.設(shè)橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的右頂點為A,左頂點為B,左焦點為F,M是橢圓上一點,且FM⊥x軸,若|AB|=4|FM|,那么該橢圓的離心率為$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知向量$\overrightarrow a=(4,5cos(α+\;\frac{π}{6})),\overrightarrow b=(3,-4tan(α+\frac{π}{6})),\;α∈(0,\frac{π}{2}),\;\overrightarrow a⊥\overrightarrow b$,
(1)求|$\overrightarrow a-2\overrightarrow b|$;
(2)求$sin(2α+\frac{π}{12})$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的左、右焦點分別是F1,F(xiàn)2,離心率為$\frac{{\sqrt{3}}}{2}$,過F1且垂直于x軸的直線被橢圓C截得的線段長為1.
(Ⅰ)求橢圓C的方程;
(Ⅱ)點P是橢圓C上除長軸端點外的任一點,連接PF1,PF2.設(shè)∠F1PF2的角平分線PM交C的長軸于點M(m,0),求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知cosxcos(x+y)+sinxsin(x+y)=-$\frac{3}{5}$,y是第二象限角,則tan2y=$\frac{24}{7}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.設(shè)函數(shù)f(x)=x3-3(a+1)x+b.(a≠0)
(Ⅰ)若曲線y=f(x)在點(2,f(2))處與直線y=8相切,求a,b的值;
(Ⅱ)求函數(shù)g(x)=f(x)+3x的單調(diào)區(qū)間與極值.

查看答案和解析>>

同步練習(xí)冊答案