4.已知實數(shù)m,n滿足$\frac{5+mi}{n-2i}$=4+6i,則在復平面內(nèi),復數(shù)z=m+ni所對應的點位于( 。
A.第一象限B.第二象限C.第三象限D.第四象限

分析 把已知等式變形,利用復數(shù)代數(shù)形式的乘法運算化簡,再由復數(shù)相等的條件列式求得m,n的值得答案.

解答 解:由$\frac{5+mi}{n-2i}=\frac{(5+mi)(n+2i)}{(n-2i)(n+2i)}=\frac{5n-2m}{{n}^{2}+4}+\frac{10+mn}{{n}^{2}+4}i$=4+6i,
得5+mi=(4+6i)(n-2i)=4n+12+(6n-8)i,
∴$\left\{\begin{array}{l}{4n+12=5}\\{6n-8=m}\end{array}\right.$,解得m=-$\frac{37}{2}$,n=$-\frac{7}{4}$.
∴復數(shù)z=m+ni所對應的點的坐標為($-\frac{37}{2},-\frac{7}{4}$),位于第三象限.
故選:C.

點評 本題考查復數(shù)代數(shù)形式的乘除運算,考查復數(shù)的代數(shù)表示法及其幾何意義,考查復數(shù)相等的條件,是基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

14.執(zhí)行如圖所示的程序框圖,輸出的所有值之和是37.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.已知函數(shù)f(x)=$\sqrt{3}$sinx-cosx,x∈R.
(Ⅰ)求f(x)的最小正周期和最大值;
(Ⅱ)求f(x)的單調(diào)增區(qū)間;
(Ⅲ)求f(x)在[0,π]上的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.${log_3}9\sqrt{3}$=( 。
A.$\frac{3}{2}$B.$\frac{5}{2}$C.$\frac{7}{2}$D.$\frac{7}{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.在△ABC中,角A、B、C的對邊分別為a、b、c,已知a=1,A=30°,$sinBcotA+cosB=\sqrt{3}$,求b邊的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.(1+2x)6展開式中含x2項的系數(shù)為( 。
A.15B.30C.60D.120

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.下列4個命題中:
(1)?x0∈(0,+∞),使得2x0<3x0
(2)?x0∈(0,1),使得log2x0≥log3x0
(3)?x∈(0,+∞),log2x<2x
(4)?x∈(0,+∞),log2x<$\frac{1}{x}$
真命題的是( 。
A.(1)(3)B.(1)(4)C.(2)(3)D.(2)(4)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.已知P為拋物線y2=4x上一個動點,Q為圓x2+(y-4)2=1上一個動點,當點P到點Q的距離與點P到拋物線的準線距離之和最小時,P點的橫坐標為( 。
A.$\frac{\sqrt{17}}{8}$B.$\frac{9-\sqrt{17}}{8}$C.$\frac{9}{8}$D.$\sqrt{17}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.已知定義域為R的函數(shù)f(x)=$\frac{{-{2^x}+b}}{{{2^{x+1}}+a}}$是奇函數(shù).
(Ⅰ)求a,b的值;
(Ⅱ)已知f(x)在定義域上為減函數(shù),若對任意的t∈R,不等式f(t2-2t)+f(2t2-k)<0(k為常數(shù))恒成立.求k的取值范圍.

查看答案和解析>>

同步練習冊答案