分析 根據(jù)角與角的關(guān)系,即可得出結(jié)論.
解答 解:歸納有:sin2a+sin2(60-a)+sinasin(60-a)=$\frac{3}{4}$
證明如下:sin260=sin2[a+(60-a)]=[sinacos(60-a)+cosasin(60-a)]2
=sin2acos2(60-a)+2sinasin(60-a)cosacos(60-a)+cos2asin2(60-a)
=sin2a[1-sin2(60-a)]+2sinasin(60-a)cosacos(60-a)+(1-sin2a]sin2(60-a)
=sin2a+sin2(60-a)]+2sinasin(60-a)[cosacos(60-a)-sinasin(60-a)]
=sin2a+sin2(60-a)]+2sinasin(60-a)[cosacos(60-a)-sinasin(60-a)]
=sin2a+sin2(60-a)]+2sinasin(60-a)cos60=sin2a+sin2(60-a)]+sinasin(60-a)=$\frac{3}{4}$.
點(diǎn)評(píng) 本題考查歸納推理,考查學(xué)生分析解決問題的能力,分析左邊角的規(guī)律是關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {0,1} | B. | {2,3} | C. | {1} | D. | {2,3,4} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{4}$ | B. | 1-$\frac{π}{4}$ | C. | $\frac{π}{4}$ | D. | $\frac{π}{16}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {a|$\frac{π}{4}$≤a≤$\frac{π}{3}$} | B. | {a|$\frac{π}{4}$≤a≤$\frac{5π}{3}$} | ||
C. | {a|2kπ+$\frac{π}{4}$≤a≤2kπ+$\frac{π}{3}$,k∈Z} | D. | {a|2kπ+$\frac{π}{4}$≤a≤2kπ+$\frac{5π}{3}$,k∈Z} |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com