已知拋物線的準(zhǔn)線為,焦點(diǎn)為,圓的圓心在軸的正半軸上,且與軸相切,過(guò)原點(diǎn)作傾斜角為的直線,交于點(diǎn),交圓于另一點(diǎn),且
(1)求圓和拋物線C的方程;
(2)若為拋物線C上的動(dòng)點(diǎn),求的最小值;
(3)過(guò)上的動(dòng)點(diǎn)Q向圓作切線,切點(diǎn)為S,T,
求證:直線ST恒過(guò)一個(gè)定點(diǎn),并求該定點(diǎn)的坐標(biāo).
解:(1)易得,,設(shè)圓的方程為,
將點(diǎn)代入得,所以圓的方程為
點(diǎn)在準(zhǔn)線上,從而,拋物線的方程為
(2)由(1)得,設(shè)點(diǎn),則
得,,
所以
因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012052510042456254203/SYS201205251006565468250606_DA.files/image015.png">,所以,即的最小值為.
(3)設(shè)點(diǎn),過(guò)點(diǎn)的切線長(zhǎng)為,則以為圓心,切線長(zhǎng)為半徑的圓的方程為,
即 ①
又圓的方程為,即 ②
由①②兩式相減即得直線的方程:
顯然上面直線恒過(guò)定點(diǎn)
【解析】略
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年浙江省紹興市高三回頭考試文科數(shù)學(xué) 題型:解答題
.已知拋物線的準(zhǔn)線為,焦點(diǎn)為F,的圓心在軸的正半軸上,且與軸相切,過(guò)原點(diǎn)O作傾斜角為的直線,交于點(diǎn)A,交于另一點(diǎn)B,且AO=OB=2.
(1)求和拋物線C的方程;
(2)若P為拋物線C上的動(dòng)點(diǎn),求的最小值;
(3)過(guò)上的動(dòng)點(diǎn)Q向作切線,切點(diǎn)為S,T,求證:直線ST恒過(guò)一個(gè)定點(diǎn),并求該定點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年湖南省高二上學(xué)期質(zhì)量檢測(cè)數(shù)學(xué)理卷 題型:選擇題
已知拋物線的準(zhǔn)線為,過(guò)且斜率為的直線與相交于點(diǎn),與的一個(gè)交點(diǎn)為.若,則P的值為( )
(A)1 (B)2 (C)3 (D)4
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2011-2012年湖南省衡陽(yáng)市高二第三次月考考試?yán)砜茢?shù)學(xué) 題型:填空題
已知拋物線的準(zhǔn)線為,過(guò)且斜率為的
直線與相交于點(diǎn),與的一個(gè)交點(diǎn)為.若,則
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2010年高考試題(全國(guó)卷2)解析版(理) 題型:填空題
已知拋物線的準(zhǔn)線為,過(guò)且斜率為的直線與相交于點(diǎn),與的一個(gè)交點(diǎn)為.若,則 .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com