2.若z是復(fù)數(shù),z=$\frac{1-2i}{1+i}$.則z•$\overline{z}$=( 。
A.$\frac{\sqrt{10}}{2}$B.$\frac{\sqrt{5}}{2}$C.1D.$\frac{5}{2}$

分析 由復(fù)數(shù)代數(shù)形式的乘除運算化簡復(fù)數(shù)z,求出$\overline{z}$,然后代入z•$\overline{z}$計算得答案.

解答 解:由z=$\frac{1-2i}{1+i}$=$\frac{(1-2i)(1-i)}{(1+i)(1-i)}=\frac{-1-3i}{2}=-\frac{1}{2}-\frac{3}{2}i$,
得$\overline{z}=-\frac{1}{2}+\frac{3}{2}i$,
則z•$\overline{z}$=$(-\frac{1}{2}-\frac{3}{2}i)•(-\frac{1}{2}+\frac{3}{2}i)=\frac{5}{2}$.
故選:D.

點評 本題考查了復(fù)數(shù)代數(shù)形式的乘除運算,考查了復(fù)數(shù)的基本概念,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知x∈($\frac{π}{2}$,π),tanx=-$\frac{4}{3}$,則cos(-x-$\frac{π}{2}$)等于( 。
A.$\frac{3}{5}$B.-$\frac{3}{5}$C.-$\frac{4}{5}$D.$\frac{4}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.某廠在生產(chǎn)某產(chǎn)品的過程中,產(chǎn)量x(噸)與生產(chǎn)能耗y(噸)的對應(yīng)數(shù)據(jù)如表所示.根據(jù)最小二乘法求得回歸直線方程為$\widehat{y}$=0.7x+a.當(dāng)產(chǎn)量為80噸時,預(yù)計需要生產(chǎn)能耗為59.5噸.
x30405060
y25304045

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.執(zhí)行如圖所示的程序框圖,輸出的x值為(  )
A.0B.3C.6D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知正實數(shù)x,y,且x2+y2=1,若f(x,y)=$\frac{{{x^3}+{y^3}}}{{{{(x+y)}^3}}}$,則f(x,y)的值域為[$\frac{1}{4}$,1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知函數(shù)f(x)在(-1,+∞)上單調(diào),且函數(shù)y=f(x-2)的圖象關(guān)于x=1對稱,若數(shù)列{an}是公差不為0的等差數(shù)列,且f(a50)=f(a51),則{an}的前100項的和為( 。
A.-200B.-100C.0D.-50

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.下列說法錯誤的是( 。
A.回歸直線過樣本點的中心($\overline{x}$,$\overline{y}$)
B.兩個隨機變量的線性相關(guān)性越強,則相關(guān)系數(shù)的絕對值就越接近于1
C.在回歸直線方程$\stackrel{∧}{y}$=0.2x+0.8中,當(dāng)解釋變量x每增加1個單位時,預(yù)報變量$\stackrel{∧}{y}$平均增加0.2個單位
D.對分類變量X與Y,隨機變量K2的觀測值k越大,則判斷“X與Y有關(guān)系”的把握程度越小

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知sinα=-$\frac{12}{13}$,且α是第三象限的角,則tanα的值為( 。
A.$\frac{12}{5}$B.-$\frac{12}{5}$C.$\frac{5}{12}$D.-$\frac{5}{12}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.如圖,在三棱錐A-BCD中,側(cè)面ABD⊥底面BCD,BC⊥CD,AB=AD=4,BC=6,BD=4$\sqrt{3}$,該三棱錐三視圖的正視圖為( 。
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊答案