分析 (1)可設(shè)出圓的一般式方程,利用曲線與方程的對應(yīng)關(guān)系,根據(jù)同一性直接求出參數(shù);
(2)利用設(shè)而不求思想設(shè)出圓C與直線x-y+a=0的交點(diǎn)A,B坐標(biāo),通過OA⊥OB建立坐標(biāo)之間的關(guān)系,結(jié)合韋達(dá)定理尋找關(guān)于a的方程,通過解方程確定出a的值.
解答 解:(1)圓x2+y2+Dx+Ey+F=0,x=0,y=1有1+E+F=0
y=0,x2 -6x+1=0與x2+Dx+F=0是同一方程,故有D=-6,F(xiàn)=1,E=-2,
即圓方程為x2+y2-6x-2y+1=0;
(2)設(shè)A(x1,y1),B(x2,y2),其坐標(biāo)滿足方程組$\left\{\begin{array}{l}{{x}^{2}+{y}^{2}-6x-2y+1=0}\\{x-y+a=0}\end{array}\right.$
消去y,得到方程2x2+(2a-8)x+a2-2a+1=0,由已知可得判別式△=56-16a-4a2>0.
在此條件下利用根與系數(shù)的關(guān)系得到x1+x2=4-a,x1x2=$\frac{{a}^{2}-2a+1}{2}$…①
由于OA⊥OB可得x1x2+y1y2=0,又y1=x1+a,y2=x2+a,所以可得2x1x2+a(x1+x2)+a2=0…②
由①②可得a=-1,滿足△=56-16a-4a2>0.故a=-1.
點(diǎn)評 本題考查垂直問題的解決思想,考查學(xué)生分析問題解決問題的能力,屬于直線與圓的方程的基本題型.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 30人,30人,30人 | B. | 30人,45人,15人 | C. | 20人,30人,10人 | D. | 10人,15人,5人 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com