分析 (1)設(shè)⊙O的方程為x2+y2+Dx+Ey+F=0,其中D2+E2-4F>0則圓心O的坐標(biāo)為$({-\frac{D}{2},\;-\frac{E}{2}})$
依題意$\left\{\begin{array}{l}{1^2}+{1^2}+D+E+F=0\\{4^2}+{({-2})^2}+4D-2E+F=0\\ 2({-\frac{D}{2}})-\frac{E}{2}=0\end{array}\right.$,解得$\left\{\begin{array}{l}D=-2\\ E=4\\ F=-4\end{array}\right.$,即可.
(2)$|MN|=\sqrt{{{({1-4})}^2}+{{({1+2})}^2}}=3\sqrt{2}$
圓O的圓心(1,-2)到直線MN的距離為$\frac{|1-2-2|}{{\sqrt{{1^2}+{1^2}}}}=\frac{{3\sqrt{2}}}{2}$,
點(diǎn)P到直線MN的最大距離$3+\frac{{3\sqrt{2}}}{2}$,
即可求得△PMN面積的最大值為$\frac{1}{2}×3\sqrt{2}×({3+\frac{{3\sqrt{2}}}{2}})=\frac{9}{2}({\sqrt{2}+1})$.
解答 解:(1)設(shè)⊙O的方程為x2+y2+Dx+Ey+F=0,其中D2+E2-4F>0則圓心O的坐標(biāo)為$({-\frac{D}{2},\;-\frac{E}{2}})$ …(2分)
依題意$\left\{\begin{array}{l}{1^2}+{1^2}+D+E+F=0\\{4^2}+{({-2})^2}+4D-2E+F=0\\ 2({-\frac{D}{2}})-\frac{E}{2}=0\end{array}\right.$,即$\left\{\begin{array}{l}D+E+F+2=0\\ 4D-2E+F+20=0\\ 2D+E=0\end{array}\right.$…(3分)
解得$\left\{\begin{array}{l}D=-2\\ E=4\\ F=-4\end{array}\right.$,滿足D2+E2-4F>0…(5分)
∴所求⊙O的方程為x2+y2-2x+4y-4=0…(6分)
(2)$|MN|=\sqrt{{{({1-4})}^2}+{{({1+2})}^2}}=3\sqrt{2}$…(7分)
直線MN方程為x+y-2=0…(8分)
圓O的圓心坐標(biāo)為(1,-2),半徑為3…(9分)
其到直線MN的距離為$\frac{|1-2-2|}{{\sqrt{{1^2}+{1^2}}}}=\frac{{3\sqrt{2}}}{2}$…(10分)
點(diǎn)P到直線MN的最大距離$3+\frac{{3\sqrt{2}}}{2}$…(11分)
∴△PMN面積的最大值為$\frac{1}{2}×3\sqrt{2}×({3+\frac{{3\sqrt{2}}}{2}})=\frac{9}{2}({\sqrt{2}+1})$…(12分)
點(diǎn)評(píng) 本題考查了圓的方程,直線與圓的位置關(guān)系,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | {x|-1<x<2} | B. | {0,1} | C. | {x|-7<x<2} | D. | {0,1,2,3,4} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 3 | B. | 4 | C. | 5 | D. | 6 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{1}{9}$ | B. | $\frac{1}{3}$ | C. | $\frac{4}{9}$ | D. | $\frac{2}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | M∪N=R | B. | M?N | C. | M?N | D. | M=N |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $-\frac{1}{2}$ | B. | $\frac{1}{2}$ | C. | $-\frac{{\sqrt{3}}}{2}$ | D. | $\frac{{\sqrt{3}}}{2}$ |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com