12.若方程x+m=$\sqrt{4-{x^2}}$有且只有一個(gè)實(shí)數(shù)解,則實(shí)數(shù)m的取值范圍為{m|-2≤m<2或m=2$\sqrt{2}$}.

分析 由題意可得直線y=x+m與半圓y=$\sqrt{4-{x}^{2}}$只有一個(gè)交點(diǎn),數(shù)形結(jié)合可得實(shí)數(shù)m的取值范圍.

解答 解:∵曲線y=$\sqrt{4-{x}^{2}}$表示半圓 x2+y2=4( y≥0),
方程x+m=$\sqrt{4-{x^2}}$有且只有一個(gè)實(shí)數(shù)解,即直線y=x+m與半圓y=$\sqrt{4-{x}^{2}}$只有一個(gè)交點(diǎn),
∴利用數(shù)形結(jié)合可得-2≤m<2或m=2$\sqrt{2}$.
實(shí)數(shù)m的取值范圍是{m|-2≤m<2或m=2$\sqrt{2}$}.
故答案為:{m|-2≤m<2或m=2$\sqrt{2}$}.

點(diǎn)評(píng) 本題考查函數(shù)的零點(diǎn)的定義,函數(shù)的零點(diǎn)與方程的根的關(guān)系,體現(xiàn)了數(shù)學(xué)轉(zhuǎn)化思想方法與數(shù)形結(jié)合的數(shù)學(xué)思想,是中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.將正方形ABCD沿對(duì)角線BD折成直二面角A-BD-C,有如下四個(gè)結(jié)論:
?①AC⊥BD;?
②△ACD是等邊三角形;
?③AB與平面BCD成60°的角;
④AB與CD所成的角是90°.
其中正確結(jié)論的序號(hào)是①②.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.函數(shù)f(x)=lg(a-x)+lgx(a>0)的定義域?yàn)镾,函數(shù)g(x)=$\sqrt{x}$+$\sqrt{2-x}$的定義域?yàn)門.
(1)若a=3,求S∪T和S∩T;
(2)若S⊆T,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.在平面直角坐標(biāo)系xOy中,曲線y=x2-6x+1與坐標(biāo)軸的交點(diǎn)都在圓C上.
(1)求圓C的方程;
(2)若圓C與直線x-y+a=0交于A,B兩點(diǎn),且OA⊥OB,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知函數(shù)y=f(x)是定義在[-5,0)∪(0,5]上的偶函數(shù),且當(dāng)x∈(0,5]時(shí),f(x)=$\left\{\begin{array}{l}{lo{g}_{\frac{1}{2}}x(0<x<2)}\\{-{x}^{2}+8x-15(2≤x≤5)}\end{array}\right.$若函g(x)=f(x)-kx+2有三個(gè)不同的零點(diǎn),則實(shí)數(shù)k的取值范圍是(-8+2$\sqrt{13}$,-$\frac{2}{5}$]∪[$\frac{2}{5}$,8-2$\sqrt{13}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.若集合M={y|y=2x,x∈R},N={y|y=x2,x∈R},則有(  )
A.M∪N=RB.M?NC.M?ND.M=N

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知a為實(shí)數(shù),f(x)=(x2-4)(x-a).
(1)若f′(-1)=0,求f(x)在[-2,2]上的最大值和最小值.
(2)若f(x)在[1,2]單調(diào)遞增,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.在銳角三角形ABC中,已知內(nèi)角A、B、C所對(duì)的邊分別為a、b、c,且tanA-tanB=$\frac{\sqrt{3}}{3}$(1+tanA•tanB).若向量$\overrightarrow{m}$=(sinA,cosA),$\overrightarrow{n}$=(cosB,sinB),求|3$\overrightarrow{m}$-2$\overrightarrow{n}$|的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.函數(shù)f(x)=2sin(ωx+φ)(ω>0,$-\frac{π}{2}$<φ<$\frac{π}{2}$)的部分圖象如圖所示,則ω=2.

查看答案和解析>>

同步練習(xí)冊(cè)答案