15.計(jì)算i+2i2+3i3+…+2017i2017=1008+1009i.

分析 i+2i2+3i3+…+2017i2017=i+(2i2+3i3+4i4+5i5)×504,即可得出.

解答 解:i+2i2+3i3+…+2017i2017=i+(2i2+3i3+4i4+5i5)×504
=i+(2+2i)×504
=1008+1009i.
故答案為:1008+1009i.

點(diǎn)評(píng) 本題考查了復(fù)數(shù)的周期性及其運(yùn)算性質(zhì),考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.在直角坐標(biāo)系中,定義P(x1,y1),Q(x2,y2)之間的“直角距離”:d(P,Q)=|x1-x2|+|y1-y2|.若點(diǎn)A(-2,4),M(x,y)為直線x-y+8=0上的動(dòng)點(diǎn)
(Ⅰ)解關(guān)于x的不等式d(A,M)≤4;
(Ⅱ)求d(A,M)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.將正方形ABCD沿對(duì)角線BD折成直二面角A-BD-C,有如下四個(gè)結(jié)論:
?①AC⊥BD;?
②△ACD是等邊三角形;
?③AB與平面BCD成60°的角;
④AB與CD所成的角是90°.
其中正確結(jié)論的序號(hào)是①②.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.某單位6個(gè)員工借助互聯(lián)網(wǎng)開展工作,每個(gè)員工上網(wǎng)的概率都是0.5且相互獨(dú)立,則至少( 。﹤(gè)人同時(shí)上網(wǎng)的概率小于0.3.
A.3B.4C.5D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.從如圖所示的長方形區(qū)域內(nèi)任取一個(gè)點(diǎn)M(x,y),則點(diǎn)M取自陰影部分的概率為( 。
A.$\frac{1}{2}$B.$\frac{1}{4}$C.$\frac{1}{3}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.若在區(qū)間[0,2]中隨機(jī)地取兩個(gè)數(shù),則這兩個(gè)數(shù)中較小的數(shù)大于$\frac{2}{3}$的概率是(  )
A.$\frac{1}{9}$B.$\frac{1}{3}$C.$\frac{4}{9}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.函數(shù)f(x)=lg(a-x)+lgx(a>0)的定義域?yàn)镾,函數(shù)g(x)=$\sqrt{x}$+$\sqrt{2-x}$的定義域?yàn)門.
(1)若a=3,求S∪T和S∩T;
(2)若S⊆T,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.在平面直角坐標(biāo)系xOy中,曲線y=x2-6x+1與坐標(biāo)軸的交點(diǎn)都在圓C上.
(1)求圓C的方程;
(2)若圓C與直線x-y+a=0交于A,B兩點(diǎn),且OA⊥OB,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.在銳角三角形ABC中,已知內(nèi)角A、B、C所對(duì)的邊分別為a、b、c,且tanA-tanB=$\frac{\sqrt{3}}{3}$(1+tanA•tanB).若向量$\overrightarrow{m}$=(sinA,cosA),$\overrightarrow{n}$=(cosB,sinB),求|3$\overrightarrow{m}$-2$\overrightarrow{n}$|的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案