17.下列四個(gè)命題,其中是假命題的是( 。
A.不存在無窮多個(gè)角α和β,使得sin(α+β)=sinαcosβ-cosαsinβ
B.存在這樣的角α和β,使得cos(α+β)=cosαcosβ+sinαsinβ
C.對(duì)任意角α和β,都有cos(α+β)=cosαcosβ-sinαsinβ
D.不存在這樣的角α和β,使得sin(α+β)≠sinαcosβ+cosαsinβ

分析 A,當(dāng)α=β=2kπ(k∈Z)時(shí),利用正弦函數(shù)與余弦函數(shù)的性質(zhì)可判斷A之正誤;
B,取α=β=0,可判斷B的正誤;
C,利用兩角和的余弦公式可判斷C之正誤;
D,利用兩角和的余弦公式可判斷D之正誤.

解答 解:A,當(dāng)α=β=2kπ(k∈Z)時(shí),sinα=sinβ=0,cosα=cosβ=1,sin(α+β)=0,
所以sin(α+β)=cosαcosβ-sinαsinβ,故A錯(cuò)誤;
B,當(dāng)α=β=0時(shí),cos(0+0)=cos0cos0+sin0sin0=1正確,故B正確;
C,對(duì)于任意的α和β,都有cos(α+β)=cosαcosβ-sinαsinβ,這是兩角和的余弦公式,顯然正確;
D,由兩角和的正弦公式sin(α+β)=sinαcosβ+cosαsinβ可知,不存在這樣的α和β值,使得sin(α+β)≠sinαcosβ+cosαsinβ,正確.
故選:A.

點(diǎn)評(píng) 本題考查命題的真假判斷與應(yīng)用,著重考查兩角和的正弦,余弦公式,考查特值法在判斷、選擇中的應(yīng)用,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知命題p:?x≥0,x2-3x+1>0.請(qǐng)寫出¬p:?x≥0,x2-3x+1≤0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知定義域?yàn)镽的函數(shù)$f(x)=\frac{{-{2^x}+a}}{{{2^x}+1}}$是奇函數(shù).
(1)求實(shí)數(shù)a的值;
(2)用定義證明:f(x)在R上是減函數(shù);
(3)若對(duì)于任意$x∈[\frac{1}{2},3]$都有f(kx2)+f(2x-1)>0成立,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知M={x|x2-5x+6=0},N={x|ax=12},若N⊆M,求實(shí)數(shù)a所構(gòu)成的集合A,并寫出A的所有非空真子集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.在復(fù)數(shù)范圍內(nèi),純虛數(shù)i的三個(gè)立方根為-i,$-\frac{\sqrt{3}}{2}+\frac{i}{2}$,$\frac{\sqrt{3}}{2}+\frac{i}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知z=x+2y,其中實(shí)數(shù)x,y滿足$\left\{{\begin{array}{l}{y≥x}\\{x+y≤2}\\{x≥\frac{1}{2}}\end{array}}\right.$,則z的最大值是z的最小值的$\frac{7}{3}$倍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知函數(shù)f(x)=|sinx|•cosx,給出下列五個(gè)結(jié)論:
①f($\frac{2014π}{3}$)=-$\frac{\sqrt{3}}{4}$;
②若|f(x1)|=|f(x2)|,則x1=x2+kπ(k∈Z);
③f(x)在區(qū)間[-$\frac{π}{4}$,$\frac{π}{4}$]上單調(diào)遞增;
④函數(shù)f(x)的周期為π;
⑤f(x)的圖象關(guān)于點(diǎn)($\frac{π}{2}$,0)成中心對(duì)稱
其中正確的結(jié)論是①⑤(寫出所有正確結(jié)論的序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.一船以24km/h的速度向正北方向航行,在點(diǎn)A處望見燈塔S在船的北偏東30°方向上,15min后到點(diǎn)B處望見燈塔在船的北偏東75°方向上,則船在點(diǎn)B時(shí)與燈塔S的距離是3$\sqrt{2}$km.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.(lg2)2+lg2•lg5+$\frac{lo{g}_{3}5}{lo{g}_{3}10}$的值為1.

查看答案和解析>>

同步練習(xí)冊(cè)答案