7.已知命題p:?x≥0,x2-3x+1>0.請寫出¬p:?x≥0,x2-3x+1≤0.

分析 命題:?x≥0,x2-3x+1>0”是全稱命題,其否定應為特稱命題,注意量詞和不等號的變化.

解答 解:命題:?x≥0,x2-3x+1>0是全稱命題,否定時將量詞對任意的x∈R變?yōu)?x∈R,再將不等號≥變?yōu)椋技纯桑?br />故¬p:?x≥0,x2-3x+1≤0;
故答案為:?x≥0,x2-3x+1≤0.

點評 本題考查命題的否定,全稱命題和特稱命題,屬基本知識的考查.注意在寫命題的否定時量詞的變化,屬基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

2.等比數(shù)列{an}的通項公式是an=-3×22-n,則它的首項a1=-6,公比q=$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.函數(shù)y=sin(ωx+φ)(ω>0,|φ|<$\frac{π}{2}$)在同一個周期內,當x=$\frac{π}{4}$時y取最大值1,當x=$\frac{7π}{12}$時y取最小值-1.
(1)求函數(shù)的解析式y(tǒng)=f(x);
(2)當x∈[$\frac{5π}{36}$,$\frac{19π}{36}$]時.求函數(shù)y=f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

20.若直線(3-a)x+(2a-1)y+7=0與直線(2a+1)x+(a+5)y-6=0互相垂直,則a的值為$\frac{1}{7}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.已知直線l1:x-my+2=0,直線l2的方向向量$\overrightarrow{a}$=(-1,-2),若l1⊥l2,則m的值為( 。
A.-$\frac{1}{2}$B.2C.$\frac{1}{2}$D.-2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.若向量$\overrightarrow a=(cosθ{,_{\;}}sinθ)$,$\overrightarrow b=(\sqrt{3}{,_{\;}}-1)$.
(1)若$\overrightarrow a⊥\overrightarrow{b,}$且$θ∈(0,\frac{π}{2})$,求θ的值;
(2)若θ∈[0,π],求$|2\overrightarrow a-\overrightarrow b|$的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.已知一圓C的圓心為C(2,-1),且該圓被直線l:x-y-1=0截得的弦長是2$\sqrt{2}$,求該圓的方程和過弦兩端點的切線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.若10-2x=25,則10x的值為( 。
A.$±\frac{1}{5}$B.$\frac{1}{5}$C.$-\frac{1}{5}$D.$\frac{1}{625}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.下列四個命題,其中是假命題的是( 。
A.不存在無窮多個角α和β,使得sin(α+β)=sinαcosβ-cosαsinβ
B.存在這樣的角α和β,使得cos(α+β)=cosαcosβ+sinαsinβ
C.對任意角α和β,都有cos(α+β)=cosαcosβ-sinαsinβ
D.不存在這樣的角α和β,使得sin(α+β)≠sinαcosβ+cosαsinβ

查看答案和解析>>

同步練習冊答案