【題目】如圖,四棱柱中,底面,底面是梯形,,.

(1)求證:平面平面;

(2)在線段上是否存在一點,使平面,若存在,請確定點的位置;若不存在,請說明理由.

【答案】(1)證明見解析;(2)存在點的中點,使平面.

【解析】試題分析:(1)先由棱柱的性質(zhì)證明,再根據(jù)勾股定理可得,從而可得平面,進而根據(jù)面面垂直的判定定理即可證明平面平面;(2)存在點的中點,使平面,先根據(jù)中位線定理及平行四邊形的性質(zhì)可得根據(jù)線面平行的判定定理進行證明可得到結論.

試題解析:(1)因為底面, 所以底面,因為底面,

所以因為底面是梯形,,,

因為,所以所以,

所以在中,所以所以

又因為所以平面因為平面,所以平面平面

(2)存在點的中點,使平面.

證明如下:取線段的中點為點,連結,所以,且因為所以,且所以四邊形是平行四邊形.所以

又因為平面,平面,所以平面

【方法點晴】本題主要考查線面平行的判定定理、線面垂直與面面垂直的判定,屬于難題.證明線面平行的常用方法:①利用線面平行的判定定理,使用這個定理的關鍵是設法在平面內(nèi)找到一條與已知直線平行的直線,可利用幾何體的特征,合理利用中位線定理、線面平行的性質(zhì)或者構造平行四邊形、尋找比例式證明兩直線平行.②利用面面平行的性質(zhì),即兩平面平行,在其中一平面內(nèi)的直線平行于另一平面.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓C: (a>b>0)的離心率為 ,直線y=x+2過橢圓C的左焦點F1

(1)求橢圓C的標準方程;

(2)設過點A(0,﹣1)的直線l與橢圓交于不同兩點M、N,當△MON的面積為 時,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】定義:已知函數(shù)f(x)在[m,n](m<n)上的最小值為t,若t≤m恒成立,則稱函數(shù)f(x)在[m,n](m<n)上具有“DK”性質(zhì).例如函數(shù) 在[1,9]上就具有“DK”性質(zhì).
(1)判斷函數(shù)f(x)=x2﹣2x+2在[1,2]上是否具有“DK”性質(zhì)?說明理由;
(2)若g(x)=x2﹣ax+2在[a,a+1]上具有“DK”性質(zhì),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)).

(1)討論函數(shù)極值點的個數(shù),并說明理由;

(2)若, 恒成立,求的最大整數(shù)值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,菱形中,,相交于點,,.

(I)求證:平面

(II)當直線與平面所成角的大小為時,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】現(xiàn)如今網(wǎng)上購物已經(jīng)習以為常,變成人們?nèi)粘I畹囊徊糠,沖擊著人們的傳統(tǒng)消費習慣、思維生活方式,以其特殊的優(yōu)勢而逐漸深入人心.某市場調(diào)研機構對在雙十一購物的名年齡在消費者進行了年齡段和性別分布的調(diào)查,其部分結果統(tǒng)計如下表:

年齡(歲)

70

50

40

30

20

30

20

15

10

(1)若按年齡用分層抽樣的方法抽取84個人其中內(nèi)抽取了36,的值

(2)在(1)的條件下,用分層抽樣的方法在消費者中抽取一個容量為8的本,將該樣本看成一個總體,從中任取3,表示抽得女性消費者的人數(shù),隨機變量的分布列和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(log2x)=x2+2x.
(1)求函數(shù)f(x)的解析式;
(2)若方程f(x)=a2x﹣4在區(qū)間(0,2)內(nèi)有兩個不相等的實根,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(1)討論的單調(diào)區(qū)間;

(2)當時,證明: .

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】本小題滿分14已知遞增等差數(shù)列中的是函數(shù)的兩個零點.數(shù)列滿足,點在直線上,其中是數(shù)列的前項和.

1求數(shù)列的通項公式;

2,求數(shù)列的前n項和

查看答案和解析>>

同步練習冊答案