精英家教網 > 高中數學 > 題目詳情

【題目】在平面直角坐標系中,以原點為極點,軸非負半軸為極軸,長度單位相同,建立極坐標系,曲線的極坐標方程為,直線過點,傾斜角為.

1)將曲線的極坐標方程化為直角坐標方程,寫出直線的參數方程的標準形式;

2)已知直線交曲線兩點,求.

【答案】1是參數)(2

【解析】

1)將曲線用二倍角余弦整理,代入,即可求出其直角坐標方程;根據條件,寫出直線參數方程的標準形式;

(2)將直線參數方程的標準形式代入橢圓方程,利用直線參數的幾何意義,結合根與系數關系,即可求出結論.

1)由得,

代入上式整理得,

∴曲線的直角坐標方程為,

由題知直線的標準參數方程為是參數).

2)設直線與曲線交點對應的參數分別為,

將直線的標準參數方程為是參數)

代入曲線方程整理得,

,,

.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】李先生家住小區(qū),他工作在科技園區(qū),從家開車到公司上班路上有兩條路線(如圖),路線上有三個路口,各路口遇到紅燈的概率均為;路線上有兩個路口,各路口遇到紅燈的概率依次為.

Ⅰ)若走路線,求最多遇到1次紅燈的概率;

Ⅱ)若走路線,求遇到紅燈次數的數學期望;

Ⅲ)按照平均遇到紅燈次數最少的要求,請你幫助李先生從上述兩條路線中選擇一條最好的上班路線,并說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】阿波羅尼斯(古希臘數學家,約公元前262-190年)的著作《圓錐曲線論》是古代世界光輝的科學成果,它將圓錐曲線的性質網羅殆盡,幾乎使后人沒有插足的余地.他證明過這樣一個命題:平面內與兩定點距離的比為常數的點的軌跡是圓,后人將這個圓稱為阿波羅尼斯圓.①若定點為,寫出的一個阿波羅尼斯圓的標準方程__________;②△中,,則當△面積的最大值為時,______.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知F1,F2是橢圓Cab0)的左、右焦點,過橢圓的上頂點的直線x+y=1被橢圓截得的弦的中點坐標為.

(Ⅰ)求橢圓C的方程;

(Ⅱ)過F1的直線l交橢圓于AB兩點,當△ABF2面積最大時,求直線l的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在直三棱柱ABCA1B1C1AA1ABAC2,ABAC,M是棱BC的中點點P在線段A1B

(1)若P是線段A1B的中點,求直線MP與直線AC所成角的大小;

(2)若的中點,直線與平面所成角的正弦值為,求線段BP的長度.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】阿波羅尼斯(古希臘數學家,約公元前262-190年)的著作《圓錐曲線論》是古代世界光輝的科學成果,它將圓錐曲線的性質網羅殆盡,幾乎使后人沒有插足的余地.他證明過這樣一個命題:平面內與兩定點距離的比為常數的點的軌跡是圓,后人將這個圓稱為阿波羅尼斯圓.①若定點為,寫出的一個阿波羅尼斯圓的標準方程__________;②△中,,則當△面積的最大值為時,______.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知二次函數y=f1(x)的圖象以原點為頂點且過點(1,1),反比例函數y=f2(x)的圖象與直線y=x的兩個交點間距離為8,f(x)= f1(x)+ f2(x).

(Ⅰ) 求函數f(x)的表達式;

(Ⅱ) 證明:a>3,關于x的方程f(x)= f(a)有三個實數解.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在直四棱柱中,底面是邊長為6的正方形,點在線段上,且滿足,過點作直四棱柱外接球的截面,所得的截面面積的最大值與最小值之差為,則直四棱柱外接球的半徑為(

A.B.C.D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】一副撲克牌有52張(不包括大小王),求:

1)任取1張是紅桃的概率;

2)任取2張是同花色的概率;

3)任取3張,至少有2張是同花色的概率.

查看答案和解析>>

同步練習冊答案