【題目】阿波羅尼斯(古希臘數(shù)學家,約公元前262-190年)的著作《圓錐曲線論》是古代世界光輝的科學成果,它將圓錐曲線的性質(zhì)網(wǎng)羅殆盡,幾乎使后人沒有插足的余地.他證明過這樣一個命題:平面內(nèi)與兩定點距離的比為常數(shù)的點的軌跡是圓,后人將這個圓稱為阿波羅尼斯圓.①若定點為,寫出的一個阿波羅尼斯圓的標準方程__________;②△中,,則當△面積的最大值為時,______.

【答案】

【解析】

1)設(shè)動點為,則,化簡即得阿波羅尼斯圓的標準方程;

(2)設(shè),,得到點的軌跡方程是,再求出圓的半徑為,解方程即得解.

1)設(shè)動點為,則,

所以,

化簡得.

所以的一個阿波羅尼斯圓的標準方程為.

2)設(shè),,

因為,

所以

所以,點的軌跡是圖中的圓.

當△面積的最大值為時,軸,此時就是圓的半徑,

所以圓的半徑為.

所以.

故答案為:.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在直三棱柱中,,,分別是,的中點.

1)求證:平面

2)求證:平面平面

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在正六棱錐中,底面邊長和側(cè)棱分別是24,分別是的中點,給出下面三個判斷:(1所成的角的余弦值為;(2和底面所成的角是;(3)平面平面;其中判斷正確的個數(shù)是(

A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】隨著生活水平的逐步提高,人們對文娛活動的需求與日俱增,其中觀看電視就是一種老少皆宜的娛樂活動.但是我們在觀看電視娛樂身心的同時,也要注意把握好觀看時間,近期研究顯示,一項久坐的生活指標——看電視時間,是導(dǎo)致視力下降的重要因素,即看電視時間越長,視力下降的風險越大.研究者在某小區(qū)統(tǒng)計了每天看電視時間(單位:小時)與視力下降人數(shù)的相關(guān)數(shù)據(jù)如下:

編號

1

2

3

4

5

1

1.5

2

2.5

3

12

16

22

24

26

1)請根據(jù)上面的數(shù)據(jù)求關(guān)于的線性回歸方程

2)我們用(1)問求出的線性回歸方程估計回歸方程,由于隨機誤差,所以的估計值,成為點()的殘差.

①填寫下面的殘差表,并繪制殘差圖;

編號

1

2

3

4

5

1

1.5

2

2.5

3

12

16

22

24

26

②若殘差圖所在帶狀區(qū)域?qū)挾炔怀^4,我們則認為該模型擬合精度比較高,回歸方程的預(yù)報精度較高,試根據(jù)①繪制的殘差圖分折該模型擬合精度是否比較高?

附:回歸直線的斜率和截距的最小二乘估計分別為,

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】農(nóng)歷五月初五是端午節(jié),民間有吃粽子的習慣,粽子又稱粽籺,俗稱粽子,古稱角黍,是端午節(jié)大家都會品嘗的食品,傳說這是為了紀念戰(zhàn)國時期的楚國大臣、愛國主義詩人屈原.如圖,平行四邊形形狀的紙片是由六個邊長為2的正三角形組成的,將它沿虛線對折起來,可以得到如圖所示粽子形狀的六面體,則該六面體的體積為______________

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在三棱錐中,,,點D在線段AB上,且滿足.

1)求證:

2)當平面平面時,求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】圓周率π是數(shù)學中一個非常重要的數(shù),歷史上許多中外數(shù)學家利用各種辦法對π進行了估算.現(xiàn)利用下列實驗我們也可對圓周率進行估算.假設(shè)某校共有學生N人,讓每人隨機寫出一對小于1的正實數(shù)a,b,再統(tǒng)計出a,b1能構(gòu)造銳角三角形的人數(shù)M,利用所學的有關(guān)知識,則可估計出π的值是( )

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,以原點為極點,軸非負半軸為極軸,長度單位相同,建立極坐標系,曲線的極坐標方程為,直線過點,傾斜角為.

1)將曲線的極坐標方程化為直角坐標方程,寫出直線的參數(shù)方程的標準形式;

2)已知直線交曲線兩點,求.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系中,曲線的參數(shù)方程為為參數(shù)).

1)求曲線的普通方程;

2)以為極點,軸的非負半軸為極軸建立極坐標系,直線的極坐標方程為,(),直線與曲線交于,兩點,求線段的長度.

查看答案和解析>>

同步練習冊答案