16.兩個(gè)人射擊,甲射擊一次中靶的概率為$\frac{1}{2}$,乙射擊一次中靶的概率是$\frac{1}{3}$,兩人各射擊一次,中靶至少一次就算完成目標(biāo),則完成目標(biāo)的概率$\frac{2}{3}$.

分析 兩人各射擊一次,中靶至少一次就算完成目標(biāo),分成三種情況①乙中靶甲不中②甲中靶乙不中③甲乙全中,分別計(jì)算三種情況的概率,即可得到答案;

解答 解:共三種情況:甲中靶乙不中$\frac{1}{2}$•$\frac{2}{3}$=$\frac{1}{3}$; 乙中靶甲不中$\frac{1}{2}$•$\frac{1}{3}$=$\frac{1}{6}$;
甲乙全中$\frac{1}{2}$•$\frac{1}{3}$=$\frac{1}{6}$.∴概率是$\frac{1}{6}$+$\frac{1}{6}$+$\frac{1}{3}$=$\frac{2}{3}$.   
故答案為:$\frac{2}{3}$.

點(diǎn)評(píng) 本題考查的知識(shí)點(diǎn)互斥事件的概率加法公式,對(duì)立事件的概率減法公式,n次獨(dú)立重復(fù)試驗(yàn)中恰好發(fā)生k次的概率,在處理此類(lèi)問(wèn)題是,型清楚所求事件之間的關(guān)系,及所求事件是分類(lèi)的(分幾類(lèi)?)還是分步的(分幾步?)是解答的關(guān)鍵

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.如圖,等腰直角三角形ABC中,∠ACB=90°,在斜邊AB上取兩點(diǎn)M、N,使∠MCN=45°,設(shè)MN=x,BN=n,AM=m,則以x、m、n為邊的三角形的形狀為( 。
A.銳角三角形B.直角三角形C.鈍角三角形D.隨x、m、n的值而定

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.已知向量$\overrightarrow{a}$=(1,3),$\overrightarrow$=(-2,-6),|$\overrightarrow{c}$|=10,若($\overrightarrow{a}$+$\overrightarrow$)•$\overrightarrow{c}$=5,則$\overrightarrow{a}$與$\overrightarrow{c}$的夾角為120.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.將4名同學(xué)等可能的分到甲、乙、丙三個(gè)班級(jí).
(1)恰有2名同學(xué)被分到甲班的概率;
(2)這4名同學(xué)被分到2個(gè)班的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.已知數(shù)列{an}的前n項(xiàng)和為Sn,且Sn=$\frac{3}{2}{n^2$+$\frac{1}{2}n$,遞增的等比數(shù)列{bn}滿(mǎn)足b1+b4=18,b2b3=32,
(1)求an,bn的通項(xiàng)公式;
(2)設(shè)cn=anbn,n∈N*,求數(shù)列cn的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.?dāng)?shù)列{an}前n項(xiàng)的和Sn=2•3n+b(b是常數(shù)),若這個(gè)數(shù)列是等比數(shù)列,那么b=-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.已知橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的右焦點(diǎn)為F1(1,0),離心率為e.設(shè)A,B為橢圓上關(guān)于原點(diǎn)對(duì)稱(chēng)的兩點(diǎn),AF1的中點(diǎn)為M,BF1的中點(diǎn)為N,原點(diǎn)O在以線段MN為直徑的圓上.設(shè)直線AB的斜率為k,若0<k≤$\sqrt{3}$,則e的取值范圍為[$\sqrt{3}$-1,1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.已知橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左右焦點(diǎn)為F1,F(xiàn)2,P為橢圓上一點(diǎn),且|PF1|•|PF2|的最大值的取值范圍是[2c2,3c2],其中c=$\sqrt{{a}^{2}-^{2}}$,則橢圓的離心率的取值范圍是(  )
A.[$\frac{1}{3}$,$\frac{1}{2}$]B.[$\frac{\sqrt{2}}{2}$,1)C.[$\frac{\sqrt{3}}{3}$,1)D.[$\frac{\sqrt{3}}{3}$,$\frac{\sqrt{2}}{2}$]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)中,長(zhǎng)軸長(zhǎng)為2$\sqrt{2}$,離心率等于$\frac{\sqrt{2}}{2}$,
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)直線l交橢圓于A、B兩點(diǎn),且AB的中點(diǎn)M為($\frac{1}{2}$,$\frac{1}{2}$),求直線l的方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案