分析 通過幾何法得到|F1C|=|CO|=$\frac{1}{2}$,由$\left\{\begin{array}{l}{\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{a}^{2}-1}=1}\\{{x}^{2}+{y}^{2}=1}\end{array}\right.$,可得到A點坐標,從而求出OA的斜率,由直線AB斜率為0<k≤$\sqrt{3}$,求出a的取值范圍,從而求出e的取值范圍.
解答 解:記線段MN與x軸交點為C.
AF1的中點為M,BF1的中點為N,
∴MN∥AB,|F1C|=|CO|=$\frac{1}{2}$,
∵A、B為橢圓上關(guān)于原點對稱的兩點,
∴|CM|=|CN|.
∵原點O在以線段MN為直徑的圓上,
∴|CO|=|CM|=|CN|=$\frac{1}{2}$.
∴|OA|=|OB|=c=1.
∵|OA|>b,
∴a2=b2+c2<2c2,
∴e=$\frac{c}{a}$>$\frac{\sqrt{2}}{2}$.
設(shè)A(x,y),
由$\left\{\begin{array}{l}{\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{a}^{2}-1}=1}\\{{x}^{2}+{y}^{2}=1}\end{array}\right.$,
得$\left\{\begin{array}{l}{{x}^{2}={a}^{2}(2-{a}^{2})}\\{{y}^{2}=1-2{a}^{2}+{a}^{4}}\end{array}\right.$.
∵直線AB斜率為0<k≤$\sqrt{3}$,
∴0<$\frac{1-2{a}^{2}+{a}^{4}}{{a}^{2}(2-{a}^{2})}$≤3,
∴1-$\frac{\sqrt{3}}{2}$≤a2≤1+$\frac{\sqrt{3}}{2}$,
即為$\frac{\sqrt{3}-1}{2}$≤a≤$\frac{\sqrt{3}+1}{2}$,
∴e=$\frac{c}{a}$=$\frac{1}{a}$∈[$\sqrt{3}-1$,$\sqrt{3}+1$],
由于0<e<1,
∴離心率e的取值范圍為[$\sqrt{3}$-1,1).
故答案為:[$\sqrt{3}$-1,1).
點評 本題考查橢圓的方程和性質(zhì),主要考查橢圓方程的運用,同時考查圓的性質(zhì)和直線斜率公式的運用,考查運算能力,屬于中檔題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 3 | B. | 6 | C. | 8 | D. | 10 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{\sqrt{6}}{6}$ | B. | $\frac{2\sqrt{6}}{3}$ | C. | $\frac{\sqrt{6}}{3}$ | D. | $\frac{4\sqrt{6}}{3}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com