4.已知a>0且a≠1,若函數(shù)f(x)=loga[ax2-(2-a)x+3]在[$\frac{1}{3}$,2]上是增函數(shù),則a的取值范圍是{a|$\frac{1}{6}$<a≤$\frac{2}{5}$ 或a≥$\frac{6}{5}$ }.

分析 利用復(fù)合函數(shù)的單調(diào)性,二次函數(shù)、對數(shù)函數(shù)的性質(zhì),分類討論,求得a的范圍.

解答 解:∵a>0且a≠1,若函數(shù)f(x)=loga[ax2-(2-a)x+3]在[$\frac{1}{3}$,2]上是增函數(shù),
設(shè)g(x)=ax2-(2-a)x+3,
當(dāng)a∈(0,1)時,則$\frac{2-a}{2a}$=$\frac{1}{a}$-$\frac{1}{2}$>$\frac{1}{2}$,
∴$\left\{\begin{array}{l}{\frac{1}{a}-\frac{1}{2}≥2}\\{g(2)=4a-4+2a+3>0}\end{array}\right.$,求得$\frac{1}{6}$<a≤$\frac{2}{5}$.
當(dāng)a>1時,則$\left\{\begin{array}{l}{\frac{1}{a}-\frac{1}{2}≤\frac{1}{3}}\\{g(\frac{1}{3})=\frac{4a+21}{9}>0}\end{array}\right.$,求得a≥$\frac{6}{5}$.
綜上可得,a的范圍為{a|$\frac{1}{6}$<a≤$\frac{2}{5}$ 或a≥$\frac{6}{5}$ },
故答案為:{a|$\frac{1}{6}$<a≤$\frac{2}{5}$ 或a≥$\frac{6}{5}$ }.

點(diǎn)評 本題主要考查復(fù)合函數(shù)的單調(diào)性,二次函數(shù)、對數(shù)函數(shù)的性質(zhì),屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.一個盒子里裝有三張卡片,分別標(biāo)記有數(shù)字1,2,3,這三張卡片除標(biāo)記的數(shù)字外完全相同,從中隨機(jī)有放回地抽取3次,每次抽取1張,求下列事件的概率.
(1)求“抽取的卡片上的數(shù)字滿足其中兩張之和等于第三張”的概率;
(2)求“抽取的卡片上的數(shù)字不完全相同”的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.以點(diǎn)(-2,1)為圓心且與直線3x-4y-10=0相切的圓的方程為( 。
A.(x-2)2+(y+1)2=4B.(x+2)2+(y-1)2=4C.(x-2)2+(y+1)2=16D.(x+2)2+(y-1)2=16

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.設(shè)A1,A2,…,An(n≥4)為集合S={1,2,…,n}的n個不同子集,為了表示這些子集,作n行n列的數(shù)陣,規(guī)定第i行第j列的數(shù)為:${a_{ij}}=\left\{\begin{array}{l}0,\;i∉{A_j}\\ 1,\;i∈{A_j}\end{array}\right.$.則下列說法中,錯誤的是( 。
A.數(shù)陣中第一列的數(shù)全是0當(dāng)且僅當(dāng)A1=∅
B.數(shù)陣中第n列的數(shù)全是1當(dāng)且僅當(dāng)An=S
C.數(shù)陣中第j行的數(shù)字和表明集合Aj含有幾個元素
D.數(shù)陣中所有的n2個數(shù)字之和不超過n2-n+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.對于n∈N+,將n表示$n={a_0}×{2^k}+{a_1}×{2^{k-1}}+{a_2}×{2^{k-2}}+…+{a_{k-1}}×{2^1}+{a_k}×{2^0}$,當(dāng)i=0時ai=1,當(dāng)1≤i≤k時,ai為0或1.記I(n)為上述表示中ai為0的個數(shù),例如:1=1×20,4=1×22+0×21+0×20,故I(1)=0,I(4)=2.則(1)I(10)=2; (2)$\sum_{n=1}^{63}{{2^{I(n)}}=}$364.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知四面體P-ABC的所有頂點(diǎn)都在球O的球面上,PC為球O的直徑,且球的體積為$\frac{4π}{3}$,AC=BC=1,AB=$\sqrt{3}$.則此四面體的表面積為( 。
A.$\sqrt{3}$B.$\frac{3\sqrt{3}}{2}$C.2$\sqrt{3}$D.3$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.如圖,網(wǎng)格紙上小正方形的邊長為1,粗線畫出的是某幾何體的三視圖,依次為正視圖(主視圖),側(cè)視圖(左視圖),俯視圖,則此幾何體的表面積為9+9$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.若函數(shù)f(x)=x+$\frac{4}{x}$,則不等式4≤f(x)<5的解集為{x|1<x<4}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知i是虛數(shù)單位,且復(fù)數(shù)z滿足(z-3)(2-i)=5.
(Ⅰ)求z及|z-2+3i|;
(Ⅱ)若z•(a+i)是純虛數(shù),求實(shí)數(shù)a的值.

查看答案和解析>>

同步練習(xí)冊答案