分析 (1)連接AC,BD,相交于O,過O作OE∥PC,與PA交于E,如圖1,則PC∥平面BDE;
(2)當(dāng)α=60°時,△PAD和△PAB都是等邊三角形,PB=PD,過A作AF⊥BD,則F為BD的中點,
利用勾股定理可以判斷線線垂直,進一步判斷線面垂直.
解答 解:(1)連接AC,BD,相交于O,過O作OE∥PC,與PA交于E,如圖1,則PC∥平面BDE,
此時AE:EP=AO:OC=AD:BC=$\sqrt{2}$:$2\sqrt{2}$=1:2;
(2)當(dāng)α=60°時,△PAD和△PAB都是等邊三角形,PB=PD,
過A作AF⊥BD,則F為BD的中點,
所以PF⊥BD,BD=2,所以AF=PF=$\frac{1}{2}$BD=1,所以PF2+AF2=PA2,所以PF⊥AF,
所以PF⊥平面ABCD,
所以PF⊥CD,
過D作DH⊥BC,則DH=AB=$\sqrt{2}$,HC=$\sqrt{2}$,所以CD=2,所以CD2+BD2=BC2,所以CD⊥BD,
BD∩PF=F,
所以CD⊥平面PBD.
點評 本題考查了線面平行的判定以及線面垂直的判定定理和性質(zhì)定理的運用;關(guān)鍵是適當(dāng)作輔助線,將問題轉(zhuǎn)化為線線關(guān)系解答.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 4個 | B. | 3個 | C. | 2個 | D. | 1個 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-∞,-$\frac{2}{3}$) | B. | ($\frac{2}{3}$,+∞) | C. | (-$\frac{2}{3}$,$\frac{2}{3}$) | D. | (-∞,-$\frac{2}{3}$)∪($\frac{2}{3}$,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com