9.求下列各式的值.
(1)sin(-$\frac{π}{4}$);
(2)tan$\frac{7π}{6}$;
(3)cos$\frac{π}{5}$+cos$\frac{2π}{5}$+cos$\frac{3π}{5}$+cos$\frac{4π}{5}$;
(4)cos$\frac{π}{7}$+cos$\frac{2π}{7}$+cos$\frac{3π}{7}$+cos$\frac{4π}{7}$+cos$\frac{5π}{7}$+cos$\frac{6π}{7}$;
(5)$\sqrt{3}$sin(-1200°)•tan$\frac{11π}{6}$-cos585°tan(-$\frac{37π}{4}$)

分析 利用誘導(dǎo)公式及特殊角的三角函數(shù)值逐一化簡(jiǎn)求值即可.

解答 解:(1)sin(-$\frac{π}{4}$)=-sin$\frac{π}{4}$=-$\frac{\sqrt{2}}{2}$;
(2)tan$\frac{7π}{6}$=tan$\frac{π}{6}$=$\frac{\sqrt{3}}{3}$;
(3)cos$\frac{π}{5}$+cos$\frac{2π}{5}$+cos$\frac{3π}{5}$+cos$\frac{4π}{5}$=cos$\frac{π}{5}$+cos$\frac{2π}{5}$+cos($π-\frac{2π}{5}$)+cos($π-\frac{π}{5}$)=cos$\frac{π}{5}$+cos$\frac{2π}{5}$-cos$\frac{π}{5}$-cos$\frac{2π}{5}$=0;
(4)cos$\frac{π}{7}$+cos$\frac{2π}{7}$+cos$\frac{3π}{7}$+cos$\frac{4π}{7}$+cos$\frac{5π}{7}$+cos$\frac{6π}{7}$=cos$\frac{π}{7}$+cos$\frac{2π}{7}$+cos$\frac{3π}{7}$+(-cos$\frac{3π}{7}$)+(-cos$\frac{2π}{7}$)+(-cos$\frac{π}{7}$)=0;
(5)$\sqrt{3}$sin(-1200°)•tan$\frac{11π}{6}$-cos585°tan(-$\frac{37π}{4}$)=(-$\sqrt{3}$sin60°)•(-tan$\frac{π}{6}$)-(-cos45°)(-tan$\frac{π}{4}$)
=(-$\sqrt{3}$×$\frac{\sqrt{3}}{2}$)×(-$\frac{\sqrt{3}}{3}$)-(-$\frac{\sqrt{2}}{2}$)×(-1)=$\frac{\sqrt{3}-\sqrt{2}}{2}$.

點(diǎn)評(píng) 本題主要考查了誘導(dǎo)公式及特殊角的三角函數(shù)值的應(yīng)用,考查了計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.設(shè)a=($\frac{2}{7}$)0.3,b=($\frac{2}{7}$)0.4,c=($\frac{2}{5}$)0.2,則a,b,c的大小關(guān)系是c>a>b.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.如果點(diǎn)P(x0,y0)在圓x2+y2=r2上,則過點(diǎn)P的切線方程為x0x+y0y=r2.如果點(diǎn)P(x0,y0)在圓x2+y2=r2外,則過點(diǎn)P的切線方程還可以用x0x+y0y=r2表示嗎?若可以,請(qǐng)證明結(jié)論;若不可以,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.設(shè)-$\frac{π}{4}$<a<0,則方程$\frac{{x}^{2}}{cosa}+\frac{{y}^{2}}{sina}$=1表示的曲線為( 。
A.焦點(diǎn)在X軸上的橢圓B.焦點(diǎn)在Y軸上的橢圓
C.焦點(diǎn)在X軸上的雙曲線D.焦點(diǎn)在Y軸上的雙曲線

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.5rad的角的終邊在第四象限.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知:f(x)=$\left\{\begin{array}{l}{sinπx,x<0}\\{f(x-1)+1,x≥0}\end{array}\right.$g(x)=$\left\{\begin{array}{l}{cosπx,x<\frac{1}{2}}\\{g(x-1)-1,x≥\frac{1}{2}}\end{array}\right.$
求證:g($\frac{1}{4}$)+f($\frac{1}{3}$)+g($\frac{5}{6}$)+f($\frac{3}{4}$)=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.過點(diǎn)(2,1),且傾斜角比直線y=-x-1的傾斜角小$\frac{π}{4}$的直線方程是x=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.解下列各方程:
(1)3(x-2)=12;
(2)4(x+2)=5-(2-x).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.等差數(shù)列{an}中,Sn為前n項(xiàng)和,若$\frac{{S}_{4}}{2{S}_{6}}$=-$\frac{1}{3}$,則$\frac{{S}_{5}}{{S}_{7}}$=0.

查看答案和解析>>

同步練習(xí)冊(cè)答案