1.等差數(shù)列{an}中,Sn為前n項(xiàng)和,若$\frac{{S}_{4}}{2{S}_{6}}$=-$\frac{1}{3}$,則$\frac{{S}_{5}}{{S}_{7}}$=0.

分析 根據(jù)已知中$\frac{{S}_{4}}{2{S}_{6}}$=-$\frac{1}{3}$,結(jié)合等差數(shù)列的前n項(xiàng)和公式,可得a1=-2d,進(jìn)而得到$\frac{{S}_{5}}{{S}_{7}}$的值.

解答 解:設(shè)等差數(shù)列{an}的公差為d,
∵$\frac{{S}_{4}}{2{S}_{6}}$=$\frac{4{a}_{1}+6d}{12{a}_{1}+30d}$=-$\frac{1}{3}$,
∴a1=-2d,
∴$\frac{{S}_{5}}{{S}_{7}}$=$\frac{5{a}_{1}+10d}{7{a}_{1}+21d}$=0,
故答案為:0

點(diǎn)評 本題考查的知識點(diǎn)是等差數(shù)列的前n項(xiàng)和公式,難度不大,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.求下列各式的值.
(1)sin(-$\frac{π}{4}$);
(2)tan$\frac{7π}{6}$;
(3)cos$\frac{π}{5}$+cos$\frac{2π}{5}$+cos$\frac{3π}{5}$+cos$\frac{4π}{5}$;
(4)cos$\frac{π}{7}$+cos$\frac{2π}{7}$+cos$\frac{3π}{7}$+cos$\frac{4π}{7}$+cos$\frac{5π}{7}$+cos$\frac{6π}{7}$;
(5)$\sqrt{3}$sin(-1200°)•tan$\frac{11π}{6}$-cos585°tan(-$\frac{37π}{4}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知cosθ=-$\frac{4}{5}$,且θ∈(π,$\frac{3π}{2}$),求sin(θ+$\frac{π}{6}$)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.①y=tan x在其定義域內(nèi)為增函數(shù);
②函數(shù)$y=2sin(2x+\frac{π}{3})$的圖象關(guān)于點(diǎn)$(\frac{π}{12},0)$對稱;
③把函數(shù)$y=3sin({2x+\frac{π}{3}})$的圖象向右平移$\frac{π}{6}$個單位長度得到函數(shù)y=3sin 2x的圖象;
④若α、β是第一象限的角,且α>β,則sinα>sinβ.
⑤函數(shù)y=ln|x-1|的圖象與函數(shù)y=-2osπx(-2≤x≤4)的圖象所有交點(diǎn)的橫坐標(biāo)之和等于6.
其中正確的說法是③⑤.(寫出所有正確說法的序號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知圓O:x2+y2=16,圓O與x軸交于A,B兩點(diǎn),過點(diǎn)B的圓的切線為l,P是圓上異于A,B的一點(diǎn),PH垂直于x軸,垂足為H,E是PH的中點(diǎn),延長AP,AE分別交l于F,C.
(1)若點(diǎn)$P(-2,\;2\sqrt{3})$,求以FB為直徑的圓M的方程,并判斷P是否在圓M上;
(2)當(dāng)P在圓O上運(yùn)動時,試判斷直線PC與圓O的位置關(guān)系.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知f(x)=ax.(a>0,a≠1),若f(x)在[-2,2]的最大值為16,則a=4或$\frac{1}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知集合A={(x,y)|y=ex},B={(x,y)|y=a},若A∩B=∅,則實(shí)數(shù)a的取值范圍是( 。
A.a<1B.a≤1C.a<0D.a≤0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知函數(shù)f(x)和g(x)分別是定義在[-10,10]上的奇函數(shù)和偶函數(shù),則函數(shù)F(x)=f(x)•g(x)的圖象關(guān)于( 。
A.x軸對稱B.y軸對稱C.原點(diǎn)對稱D.直線y=x對稱

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.若定義在x∈(-∞,0)∪(0,+∞)的偶函數(shù)y=f(x)在(-∞,0)上的解析式為$f(x)=ln(-\frac{1}{x})$,則函數(shù)y=f(x)的圖象在點(diǎn)(2,f(2))處的切線斜率為-$\frac{1}{2}$.

查看答案和解析>>

同步練習(xí)冊答案