1.已知集合A={x|x2-3x+2≤0},集合B={y|y=x2-2x+a},集合C={x|x2-ax-4≤0},命題p:A∩B≠∅,命題q:A⊆C.
(1)若命題p為假命題,求實(shí)數(shù)a的取值范圍.
(2)若命題p∧q為真命題,求實(shí)數(shù)a的取值范圍.

分析 (1)先求出集合A,B的等價(jià)條件,根據(jù)命題p為假命題,即A∩B=∅成立,進(jìn)行求解即可.
(2)若p∧q為真命題,則p,q同時(shí)為真命題,建立條件關(guān)系進(jìn)行求解即可.

解答 解:(1)A={x|x2-3x+2≤0}={x|1≤x≤2},
B={y|y=x2-2x+a}={y|y=(x-1)2+a-1≥a-1}={y|y≥a-1},
若命題p為假命題,即A∩B=∅,
則a-1>2,得a>3.
(2)若命題p∧q為真命題,
則A∩B≠∅,且A⊆C.
則$\left\{\begin{array}{l}{a-1≤2}\\{1-a-4≤0}\\{4-2a-4≤0}\end{array}\right.$,得$\left\{\begin{array}{l}{a≤3}\\{a≥-3}\\{a≥0}\end{array}\right.$,得0≤a≤3.

點(diǎn)評(píng) 本題主要考查命題的真假應(yīng)用,根據(jù)復(fù)合命題真假之間的關(guān)系是解決本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知a=30.4,b=0.43,c=log0.43,則(  )
A.b<a<cB.c<a<bC.c<b<aD.a<c<b

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知集合A={t|t使{x|x2+2tx-4t-3≠0}=R},集合B={t|t使{x|x2+2tx-2t=0}≠∅},其中x,t均為實(shí)數(shù).
(1)求A∩B;
(2)設(shè)m為實(shí)數(shù),g(α)=-sin2α+mcosα-2m,α∈[π,$\frac{3}{2}$π],求M={m|g(α)∈A∩B}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.在銳角△ABC中,內(nèi)角A,B,C的對(duì)邊分別為a,b,c,且b2+c2-a2=bc.
(1)求角A的大;
(2)若a=$\sqrt{7}$,b+c=4,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.設(shè)$a={({\frac{2}{5}})^{\frac{3}{5}}}$,$b={({\frac{2}{5}})^{\frac{2}{5}}}$,$c={({\frac{3}{5}})^{\frac{2}{5}}}$,則( 。
A.a<b<cB.a<c<bC.b<c<aD.b<a<c

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.據(jù)我國(guó)西部各省(區(qū)、市)2013年人均地區(qū)生產(chǎn)總值(單位:千元)繪制的頻率分布直方圖如圖所示,則人均地區(qū)生產(chǎn)總值在區(qū)間[28,38)上的頻率是( 。
A.0.3B.0.4C.0.5D.0.7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知a>0且a≠1,函數(shù)f(x)=$\left\{\begin{array}{l}{(2-a)x+3a-4,x≤0}\\{{a}^{x},x>0}\end{array}\right.$滿足對(duì)任意實(shí)數(shù)x1≠x2,都有$\frac{f({x}_{2})-f({x}_{1})}{{x}_{2}-{x}_{1}}$>0成立,則a的取值范圍是(  )
A.(1,2)B.[$\frac{5}{3}$,2)C.(1,$\frac{5}{3}$)D.(1,$\frac{5}{3}$]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知銳角△ABC中,滿足cos($\frac{π}{4}$+A)cos($\frac{π}{4}$-A)=$\frac{1}{4}$,則A的值等于(  )
A.$\frac{π}{3}$B.$\frac{π}{4}$C.$\frac{π}{6}$D.$\frac{π}{12}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.若直線m、n的方向向量分別為$\overrightarrow{a}$,$\overrightarrow$,則“m∥n“是“$\overrightarrow{a}$∥$\overrightarrow$“的(  )
A.充分非必要條件B.必要非充分條件
C.充分必要條件D.既非充分又非必要條件

查看答案和解析>>

同步練習(xí)冊(cè)答案