【題目】已知函數(shù),圖象上兩相鄰對(duì)稱(chēng)軸之間的距離為;_______________;
(Ⅰ)在①的一條對(duì)稱(chēng)軸;②的一個(gè)對(duì)稱(chēng)中心;③的圖象經(jīng)過(guò)點(diǎn)這三個(gè)條件中任選一個(gè)補(bǔ)充在上面空白橫線中,然后確定函數(shù)的解析式;
(Ⅱ)若動(dòng)直線與和的圖象分別交于、兩點(diǎn),求線段長(zhǎng)度的最大值及此時(shí)的值.
注:如果選擇多個(gè)條件分別解答,按第一個(gè)解答計(jì)分.
【答案】(Ⅰ)選①或②或③,;(Ⅱ)當(dāng)或時(shí),線段的長(zhǎng)取到最大值.
【解析】
(Ⅰ)先根據(jù)題中信息求出函數(shù)的最小正周期,進(jìn)而得出.
選①,根據(jù)題意得出,結(jié)合的取值范圍可求出的值,進(jìn)而得出函數(shù)的解析式;
選②,根據(jù)題意得出,結(jié)合的取值范圍可求出的值,進(jìn)而得出函數(shù)的解析式;
選③,根據(jù)題意得出,結(jié)合的取值范圍可求出的值,進(jìn)而得出函數(shù)的解析式;
(Ⅱ)令,利用三角恒等變換思想化簡(jiǎn)函數(shù)的解析式,利用正弦型函數(shù)的基本性質(zhì)求出在上的最大值和最小值,由此可求得線段長(zhǎng)度的最大值及此時(shí)的值.
(Ⅰ)由于函數(shù)圖象上兩相鄰對(duì)稱(chēng)軸之間的距離為,則該函數(shù)的最小正周期為,,此時(shí).
若選①,則函數(shù)的一條對(duì)稱(chēng)軸,則,
得,,當(dāng)時(shí),,
此時(shí),;
若選②,則函數(shù)的一個(gè)對(duì)稱(chēng)中心,則,
得,,當(dāng)時(shí),,
此時(shí),;
若選③,則函數(shù)的圖象過(guò)點(diǎn),則,
得,,,
,解得,此時(shí),.
綜上所述,;
(Ⅱ)令,,
,,當(dāng)或時(shí),即當(dāng)或時(shí),
線段的長(zhǎng)取到最大值.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列{an}中,a1=1,a1+2a2+3a3+…+nan=(n∈N*)
(Ⅰ)證明當(dāng)n≥2時(shí),數(shù)列{nan}是等比數(shù)列,并求數(shù)列{an}的通項(xiàng)an;
(Ⅱ)求數(shù)列{n2an}的前n項(xiàng)和Tn;
(Ⅲ)對(duì)任意n∈N*,使得 恒成立,求實(shí)數(shù)λ的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四棱錐的底面是正方形, ,點(diǎn)E在棱PB上.
(Ⅰ)求證:平面;
(Ⅱ)當(dāng)且E為PB的中點(diǎn)時(shí),求AE與平面PDB所成的角的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為有效預(yù)防新冠肺炎對(duì)老年人的侵害,某醫(yī)院到社區(qū)檢查老年人的體質(zhì)健康情況.從該社區(qū)全體老年人中,隨機(jī)抽取12名進(jìn)行體質(zhì)健康測(cè)試,根據(jù)測(cè)試成績(jī)(百分制)繪制莖葉圖如下.根據(jù)老年人體質(zhì)健康標(biāo)準(zhǔn),可知成績(jī)不低于80分為優(yōu)良,且體質(zhì)優(yōu)良的老年人感染新冠肺炎的可能性較低.
(Ⅰ)從抽取的12人中隨機(jī)選取3人,記表示成績(jī)優(yōu)良的人數(shù),求的分布列及數(shù)學(xué)期望;
(Ⅱ)將頻率視為概率,根據(jù)用樣本估計(jì)總體的思想,在該社區(qū)全體老年人中依次抽取10人,若抽到人的成績(jī)是優(yōu)良的可能性最大,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】選修:坐標(biāo)系與參數(shù)方程選講.
在平面直角坐標(biāo)系中,曲線(為參數(shù),實(shí)數(shù)),曲線
(為參數(shù),實(shí)數(shù)). 在以為極點(diǎn), 軸的正半軸為極軸的極坐標(biāo)系中,射線與交于兩點(diǎn),與交于兩點(diǎn). 當(dāng)時(shí), ;當(dāng)時(shí), .
(1)求的值; (2)求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù) ,x R其中a>0.
(Ⅰ)求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)若函數(shù)f(x)在區(qū)間(-3,0)內(nèi)恰有兩個(gè)零點(diǎn),求a的取值范圍;
(Ⅲ)當(dāng)a=1時(shí),設(shè)函數(shù)f(x)在區(qū)間[t,t+3]上的最大值為M(t),最小值為m(t),記 ,求函數(shù)g(t)在區(qū)間[-4,-1]上的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】以下是我們常見(jiàn)的空間幾何體.
(1) (2) (3) (4) (5) (6) (7) (8) (9)(10)
(11)
(1)以上幾何體中哪些是棱柱?
(2)一個(gè)幾何體為棱柱的充要條件是什么?
(3)如何求以上幾何體的表面積?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知定義域?yàn)?/span>的函數(shù)(,)
(1)設(shè),求的單調(diào)區(qū)間;
(2)設(shè)為導(dǎo)數(shù),
(i)證明:當(dāng),時(shí),;
(ii)設(shè)關(guān)于的方程的根為,求證:
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com