分析 利用逆向思維尋求應有的結(jié)論,注意結(jié)合函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,可得結(jié)論.
解答 解:對函數(shù)y=2sinx的圖象作相反的變換,利用逆向思維尋求應有的結(jié)論.
把y=2sinx的圖象沿x軸向右平移$\frac{π}{3}$個單位,得到解析式y(tǒng)=2sin(x-$\frac{π}{3}$)的圖象,
再使它的圖象上各點的縱坐標不變,橫坐標縮小到原來的$\frac{1}{2}$倍,
就得到解析式f(x)=2sin(2x-$\frac{π}{3}$)的圖象,
圖象上的每一點的縱坐標縮小到原來的$\frac{1}{4}$倍,得到函數(shù) f(x)=$\frac{1}{2}$sin(2x-$\frac{π}{3}$),
故答案是:$f(x)=\frac{1}{2}sin(2x-\frac{π}{3})$.
點評 本題主要考查函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,注意逆向思維的應用,屬于中檔題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | -1 | B. | 0 | C. | 1 | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 4$\sqrt{3}$ | B. | -4$\sqrt{3}$ | C. | $\frac{4\sqrt{3}}{3}$ | D. | -$\frac{4\sqrt{3}}{3}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | (-∞,2)∪(-2,-$\frac{3}{2}$] | B. | (-∞,-2)∪(-2,-$\frac{3}{2}$] | C. | (-∞,-2) | D. | (-2,-$\frac{3}{2}$] |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 3 | B. | -1 | C. | 1 | D. | 0 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com