3.對于命題p:?x∈R,使得x2+x+1<0,則?p為:?x∈R,使得x2+x+1≥0.

分析 直接利用全稱命題的否定是特稱命題寫出結(jié)果即可.

解答 解:因為全稱命題的否定是特稱命題,所以,命題p:?x∈R,使得x2+x+1<0,則?p為:?x∈R,使得x2+x+1≥0.
故答案為:?x∈R,使得x2+x+1≥0.

點評 本題考查命題的否定,全稱命題與特稱命題的否定關(guān)系,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知函數(shù)$f(x)={2^x}-\frac{1}{{{2^{|x|}}}}$.若f(x)=2,求x的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知圓A:x2+(y+1)2=1,圓B:(x-4)2+(y-3)2=1.
(1)過A的直線L截圓B所得的弦長為$\frac{6}{5}$,求該直線L的斜率;
(2)動圓P同時平分圓A與圓B的周長;
①求動圓圓心P的軌跡方程;
②問動圓P是否過定點,若經(jīng)過,則求定點坐標(biāo);若不經(jīng)過,則說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.《九章算術(shù)》之后,人們進(jìn)一步用等差數(shù)列求和公式來解決更多的問題,《張正建算經(jīng)》卷上第22題為“今有女善織,日益功疾”(注:從第2天開始,每天比前一天多織相同量的布),第一天織5尺布,現(xiàn)在一月(按30天計),共織585尺”,則第1天起每天比前一天多織10尺布.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.直線x-y+1=0與拋物線f(x)=x2+ax+b相切于點(1,f(1)),則a-b的值為( 。
A.-3B.-1C.1D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知拋物線C:y2=2px(p>0)的焦點為F,直線y=4與y軸的交點為P,與C的交點為Q,且|QF|=$\frac{5}{4}|PQ|$
(1)求C的方程     
(2)過F的直線l與C相交于A,B兩點,計算$\frac{1}{|AF|}+\frac{1}{|BF|}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.在復(fù)平面內(nèi),復(fù)數(shù)z=i(2-3i)對應(yīng)的點位于( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知函數(shù)y=f(x)的圖象上的每一點的縱坐標(biāo)擴(kuò)大到原來的4倍,橫坐標(biāo)擴(kuò)大到原來的2倍,然后把所得的圖象沿x軸向左平移$\frac{π}{3}$,這樣得到的曲線和y=2sinx的圖象相同,則已知函數(shù)y=f(x)的解析式為$f(x)=\frac{1}{2}sin(2x-\frac{π}{3})$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.在平面直角坐標(biāo)系中,直線l的參數(shù)方程為$\left\{\begin{array}{l}{x=-2-3t}\\{y=2-4t}\end{array}\right.$(t為參數(shù)),它與曲線C:(y-2)2-x2=1交于A,B兩點,則|AB|=$\frac{10\sqrt{71}}{7}$.

查看答案和解析>>

同步練習(xí)冊答案