分析 由題意可采用割補法,考慮到四面體ABCD的四個面為全等的三角形,所以四面體擴充為一個長、寬、高分別為x,y,z的長方體,且面上的對角線分別為3,3,4,由此能求出球的半徑,進而求出球的表面積.
解答 解:由題意可采用割補法,考慮到四面體ABCD的四個面為全等的三角形,
所以四面體擴充為一個長、寬、高分別為x,y,z的長方體,且面上的對角線分別為3,3,4,
并且x2+y2=9,x2+z2=9,y2+z2=16,
設球半徑為R,則有(2R)2=x2+y2+z2=17,
∴4R2=17,
∴球的表面積為S=4πR2=17π.
故答案為:17π.
點評 本題考查幾何體的外接球的表面積的求法,割補法的應用,判斷外接球的直徑是長方體的對角線的長是解題的關鍵之一.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 6x+y-11=0 | B. | 6x-y-11=0 | C. | x-6y-11=0 | D. | x+6y+11=0 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 直線a,b,c,若a∥b,b∥c,則a∥c,類推出:向量$\overrightarrow a$,$\overrightarrow b$,$\overrightarrow c$,若$\overrightarrow a$∥$\overrightarrow b$,$\overrightarrow b$∥$\overrightarrow c$,則$\overrightarrow a$∥$\overrightarrow c$ | |
B. | 同一平面內(nèi),直線a,b,c,若a⊥c,b⊥c,則a∥b,類推出:空間中,直線a,b,c,若a⊥c,b⊥c,則a∥b | |
C. | 實數(shù)a,b,若方程x2+ax+b=0有實數(shù)根,則a2≥4b,類推出:復數(shù)a,b,若方程x2+ax+b=0有實數(shù)根,則a2≥4b | |
D. | 由向量加法的幾何意義,可以類比得到復數(shù)加法的幾何意義 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com