【題目】已知點(diǎn)P在直線l:y=x-1上,若存在過(guò)點(diǎn)P的直線交拋物線于A,B兩點(diǎn),且|PA|=|AB|,則稱點(diǎn)P為“正點(diǎn)”,那么下列結(jié)論中正確的是( )
A.直線l上的所有點(diǎn)都是“正點(diǎn)”
B.直線l上僅有有限個(gè)點(diǎn)是“正點(diǎn)”
C.直線l上的所有點(diǎn)都不是“正點(diǎn)”
D.直線l上有無(wú)窮多個(gè)點(diǎn)(但不是所有的點(diǎn))是“正點(diǎn)”
【答案】A
【解析】
根據(jù)題意,設(shè)出A,P的坐標(biāo),進(jìn)而B的坐標(biāo)可表示出,把A,B的坐標(biāo)代入拋物線方程聯(lián)立消去y,求得判別式大于0恒成立,可推斷出方程有解,進(jìn)而可推斷出直線l上的所有點(diǎn)都符合.
如下圖:
根據(jù)題意,設(shè)A(m,n),P(x0,x0-1), 已知|PA|=|AB| ,則B(2m-x0,2n-x0+1),
∵點(diǎn)A,B在y=x2上,∴.
∴消去n,整理得關(guān)于x0的方程為
∵△=(4m-1)2-4(2m2-1)=8m2-8m+5>0恒成立,即方程恒有實(shí)數(shù)解,故選A.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某書(shū)店剛剛上市了《中國(guó)古代數(shù)學(xué)史》,銷售前該書(shū)店擬定了5種單價(jià)進(jìn)行試銷,每種單價(jià)(元)試銷l天,得到如表單價(jià)(元)與銷量(冊(cè))數(shù)據(jù):
單價(jià)(元) | 18 | 19 | 20 | 21 | 22 |
銷量(冊(cè)) | 61 | 56 | 50 | 48 | 45 |
(l)根據(jù)表中數(shù)據(jù),請(qǐng)建立關(guān)于的回歸直線方程:
(2)預(yù)計(jì)今后的銷售中,銷量(冊(cè))與單價(jià)(元)服從(l)中的回歸方程,已知每?jī)?cè)書(shū)的成本是12元,書(shū)店為了獲得最大利潤(rùn),該冊(cè)書(shū)的單價(jià)應(yīng)定為多少元?
附:,,,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】空氣質(zhì)量指數(shù)是檢測(cè)空氣質(zhì)量的重要參數(shù),其數(shù)值越大說(shuō)明空氣污染狀況越嚴(yán)重,空氣質(zhì)量越差.某地環(huán)保部門(mén)統(tǒng)計(jì)了該地區(qū)某月1日至24日連續(xù)24天的空氣質(zhì)量指數(shù),根據(jù)得到的數(shù)據(jù)繪制出如圖所示的折線圖,則下列說(shuō)法錯(cuò)誤的是( )
A. 該地區(qū)在該月2日空氣質(zhì)量最好
B. 該地區(qū)在該月24日空氣質(zhì)量最差
C. 該地區(qū)從該月7日到12日持續(xù)增大
D. 該地區(qū)的空氣質(zhì)量指數(shù)與這段日期成負(fù)相關(guān)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),,(常數(shù)).
(I)當(dāng)與的圖象相切時(shí),求的值;
(Ⅱ)設(shè),討論在上零點(diǎn)的個(gè)數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù),)以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為,曲線與有且只有一個(gè)公共點(diǎn).
(1)求實(shí)數(shù)的值;
(2)已知點(diǎn)的直角坐標(biāo)為,若曲線與:(為參數(shù))相交于,兩個(gè)不同點(diǎn),求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn),軸非負(fù)半軸為極軸建立極坐標(biāo)系.已知曲線的極坐標(biāo)方程為,直線的參數(shù)方程為(,為參數(shù))
(1)求曲線的直角坐標(biāo)方程;
(2)設(shè)直線與曲線交于、兩點(diǎn),點(diǎn)的直角坐標(biāo)為,若,求直線的普通方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在某次高中學(xué)科競(jìng)賽中,4000名考生的參賽成績(jī)統(tǒng)計(jì)如圖所示,60分以下視為不及格,若同一組中數(shù)據(jù)用該組區(qū)間中點(diǎn)作代表,則下列說(shuō)法中有誤的是( )
A. 成績(jī)?cè)?/span>分的考生人數(shù)最多
B. 不及格的考生人數(shù)為1000人
C. 考生競(jìng)賽成績(jī)的平均分約70.5分
D. 考生競(jìng)賽成績(jī)的中位數(shù)為75分
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在正三棱錐中,側(cè)棱長(zhǎng)為3,底面邊長(zhǎng)為2,E,F分別為棱AB,CD的中點(diǎn),則下列命題正確的是( )
A.EF與AD所成角的正切值為B.EF與AD所成角的正切值為
C.AB與面ACD所成角的余弦值為D.AB與面ACD所成角的余弦值為
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】函數(shù)的圖象與函數(shù)的圖象關(guān)于直線對(duì)稱,則關(guān)于函數(shù)以下說(shuō)法正確的是( )
A. 最大值為1,圖象關(guān)于直線對(duì)稱B. 在上單調(diào)遞減,為奇函數(shù)
C. 在上單調(diào)遞增,為偶函數(shù)D. 周期為,圖象關(guān)于點(diǎn)對(duì)稱
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com