分析 (Ⅰ)由已知條件推導(dǎo)出△PAB∽△PCA,由此能夠證明AB•PC=PA•AC.
(Ⅱ)由切割線定理求出PC=4,BC=3,由已知條件條件推導(dǎo)出△ACE∽△ADB,由此能求出AD•AE的值.
解答 (Ⅰ)證明:∵PA為圓O的切線,
∴∠PAB=∠ACP,
又∠P為公共角
∴△PAB∽△PCA,
∴$\frac{AB}{AC}=\frac{PA}{PC}$,
∴AB•PC=PA•AC.…(4分)
(Ⅱ)解:∵PA為圓O的切線,BC是過(guò)點(diǎn)O的割線,
∴PA2=PB•PC,
∴PC=4,BC=3,
又∵∠CAB=90°,∴AC2+AB2=BC2=9,
又由(Ⅰ)知$\frac{AB}{AC}=\frac{PA}{PC}$=$\frac{1}{2}$,
∴AC=$\frac{6}{\sqrt{5}}$,AB=$\frac{3}{\sqrt{5}}$,
連接EC,則∠CAE=∠EAB,∠AEC=∠ABD
∴△ACE∽△ADB,∴$\frac{AB}{AE}=\frac{AD}{AC}$,
∴AD•AE=AB•AC=$\frac{18}{5}$.(10分)
點(diǎn)評(píng) 本題考查三角形相似的證明和應(yīng)用,考查線段乘積的求法,是中檔題,解題時(shí)要注意切割線定理的合理運(yùn)用.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $h(t)=-8sin\frac{π}{6}t+10$ | B. | $h(t)=-8cos\frac{π}{6}t+10$ | C. | $h(t)=-8sin\frac{π}{6}t+8$ | D. | $h(t)=-8cos\frac{π}{6}t+8$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
A班 | 5 | 5 | 8 | 8 | 9 |
B班 | m | 4 | 7 | n | 8 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
X | 0 | 1 |
P | $\frac{a}{2}$ | $\frac{{a}^{2}}{2}$ |
A. | 2 | B. | 2或$\frac{1}{2}$ | C. | $\frac{1}{2}$ | D. | 1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 1 | B. | 2 | C. | $\sqrt{5}$ | D. | 2$\sqrt{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 2+e | B. | 2+$\sqrt{e}$ | C. | 4+e | D. | 4ln2+$\sqrt{e}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 30° | B. | 60° | C. | 90° | D. | 120° |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com