精英家教網 > 高中數學 > 題目詳情

【題目】如圖,, 兩個小島相距海里,島在島的正南方,現在甲船從島出發(fā),以海里/時的速度向島行駛,而乙船同時以海里/時的速度離開島向南偏東方向行駛,行駛多少時間后,兩船相距最近?并求出兩船的最近距離.

【答案】行駛后,甲、乙兩船相距最近為海里.

【解析】分析:設行駛了小時后,甲、乙所在位置,即它們行駛的距離后用余弦定理求出兩船間的距離,即把這個距離表示為的函數,結合二次函數的性質可求得最值,但要注意分類討論,即行駛小時后甲所在位置,在A、B之間,在B處,還是越過B點后,求距離的方法是不一樣的.

詳解:設行駛后,甲船行駛了海里到達處,乙船行駛了海里到達處.

①當,即時,在線段上,

此時

中,,,,

由余弦定理知

∴當時,取得最小值

②當時,重合,則

③當時,,

綜上可知,當時,取最小值

答:行駛后,甲、乙兩船相距最近為海里.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知直線l1的方程為3x+4y﹣12=0.

(1)若直線l2與l1平行,且過點(﹣1,3),求直線l2的方程;

(2)若直線l2與l1垂直,且l2與兩坐標軸圍成的三角形面積為4,求直線l2的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知橢圓的兩個焦點分別為 ,離心率為,且過點

)求橢圓的標準方程.

、、是橢圓上的四個不同的點,兩條都不和軸垂直的直線分別過點, ,且這條直線互相垂直,求證: 為定值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數

(1)若函數在定義域內單調遞增,求實數 的取值范圍,

(2)當時,關于的方程在[1,4]上恰有兩個不相等的實數根,

求實數的取值范圍。

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】直線l:ax+ y﹣1=0與x,y軸的交點分別為A,B,直線l與圓O:x2+y2=1的交點為C,D.給出下列命題:p:a>0,SAOB= ,q:a>0,|AB|<|CD|.則下面命題正確的是(
A.p∧q
B.¬p∧¬q
C.p∧¬q
D.¬p∧q

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】樹立和踐行“綠水青山就是金山銀山,堅持人與自然和諧共生”的理念越來越深入人心,已形成了全民自覺參與,造福百姓的良性循環(huán).據此,某網站推出了關于生態(tài)文明建設進展情況的調查,調查數據表明,環(huán)境治理和保護問題仍是百姓最為關心的熱點,參與調查者中關注此問題的約占.現從參與關注生態(tài)文明建設的人群中隨機選出人,并將這人按年齡分組:第,第,第,第,第,得到的頻率分布直方圖如圖所示.

Ⅰ)求出的值;

Ⅱ)求出這人年齡的樣本平均數(同一組數據用該區(qū)間的中點值作代表)和中位數(精確到小數點后一位);

Ⅲ)現在要從年齡較小的第、組中用分層抽樣的方法抽取人,則第、組分別抽取多少人?

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在女子十米跳臺比賽中,已知甲、乙兩名選手發(fā)揮正常的概率分別為0.9,0.85,求

(1)甲、乙兩名選手發(fā)揮均正常的概率;

(2)甲、乙兩名選手至多有一名發(fā)揮正常的概率;

(3)甲、乙兩名選手均出現失誤的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】求由直線x1、x2、y0及曲線圍成的圖形的面積S.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,正方形ABCD的邊長為a,EF、GH分別為AB、BC、CD、DA的中點.若沿EF、FG、GH、HE將四角折起,試問能折成一個四棱錐嗎?為什么?你從中能得到什么結論?對于圓錐有什么類似的結論?

查看答案和解析>>

同步練習冊答案