分析 (1)求出函數(shù)的導(dǎo)數(shù),通過討論a的范圍,求出函數(shù)的遞增區(qū)間;
(2)求出函數(shù)的導(dǎo)數(shù),通過討論a的范圍,求出函數(shù)的單調(diào)區(qū)間,從而求出函數(shù)的極值.
解答 解:(1)f′(x)=$\frac{1}{x}$-a(x>0)
∴當(dāng)a≤0時f′(x)>0恒成立,
∴f(x)的增區(qū)間為(0,+∞),
當(dāng)a>0時,f′(x)>0的解為(0,$\frac{1}{a}$),
∴f(x)的增區(qū)間為(0,$\frac{1}{a}$);
(2)f′(x)=$\frac{1}{x}$-a=0解得:x=$\frac{1}{a}$,
∴a>0時,x∈($\frac{1}{a}$,+∞)時,f′(x)<0,
x∈(0,$\frac{1}{a}$)時,f′(x)>0,
∴x=$\frac{1}{a}$是f(x)的極大值無極小值,
當(dāng)a≤0時,f′(x)>0恒成立,無極值.
點評 本題考查了函數(shù)的單調(diào)性、極值問題,考查導(dǎo)數(shù)的應(yīng)用以及分類討論思想,是一道中檔題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{3}$ | B. | $\frac{1}{2}$ | C. | $\frac{7}{40}$ | D. | $\frac{2}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-∞,3] | B. | (-∞,5] | C. | [3,+∞) | D. | [5,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (1,1) | B. | (1,-1) | C. | (-1,1) | D. | (-1,-1) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
P(χ2≥k0) | 0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 |
k0 | 0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 |
A. | 99% | B. | 95% | C. | 90% | D. | 以上不對 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com