19.設(shè)f(x)是定義在R上的奇函數(shù),當(dāng)x>0時,f′(x)sinx+f(x)cosx>0且f($\frac{π}{2}$)=1,則f(x)sinx≤1的整數(shù)解的集合為{-1,0,1}.

分析 構(gòu)造函數(shù)g(x)=f(x)sinx,確定當(dāng)x>0時,g(x)單調(diào)遞增,g(x)是偶函數(shù),即可求出f(x)sinx≤1的整數(shù)解的集合.

解答 解:設(shè)g(x)=f(x)sinx,則g′(x)=f′(x)sinx+f(x)cosx,
∵當(dāng)x>0時,f′(x)sinx+f(x)cosx>0
∴當(dāng)x>0時,g′(x)>0,
∴當(dāng)x>0時,g(x)單調(diào)遞增,
∵f(x)是定義在R上的奇函數(shù),
∴g(x)是偶函數(shù),
∵f($\frac{π}{2}$)=1,∴g($\frac{π}{2}$)=1,
∵f(x)sinx≤1,
∴|x|≤$\frac{π}{2}$,
∴f(x)sinx≤1的整數(shù)解的集合為{-1,0,1}.
故答案為:{-1,0,1}.

點評 本題考查函數(shù)的奇偶性與單調(diào)性,考查學(xué)生解不等式的能力,正確構(gòu)造函數(shù),利用函數(shù)的單調(diào)性與奇偶性是關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.復(fù)數(shù)$\frac{5}{2-i}$的共軛復(fù)數(shù)是( 。
A.2+iB.-2+iC.-2-iD.2-i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.函數(shù)f(x)=x3-3ax2+3x有極小值,則a的取值范圍是( 。
A.a>1B.a≥1C.a≥1或a≤-1D.a>1或a<-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.設(shè)x=m和x=n是函數(shù)f(x)=2lnx+$\frac{1}{2}$x2-(a+1)x的兩個極值點,其中m<n,a>0.
(Ⅰ)若a=2時,求m,n的值;
(Ⅱ)求f(m)+f(n)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.若AB為過橢圓$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{16}$=1的中心的弦,F(xiàn)1為橢圓的左焦點,則△F1AB面積的最大值12.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.f(x)=lnx-ax+1.
(1)求f(x)的單調(diào)增區(qū)間.
(2)求出f(x)的極值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.設(shè)f(θ)=$\frac{{2{{cos}^3}θ+{{sin}^2}(2π-θ)+sin(\frac{π}{2}+θ)-3}}{{2+2{{cos}^2}(π+θ)+cos(-θ)}}$.
(1)化簡 f(θ)
(2)求f($\frac{π}{3}$)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.△ABC中內(nèi)角A,B,C的對邊分別為a,b,c,若a,b,c成等比數(shù)列,且a2-c2=ac-bc,則角A的大小及$\frac{bsinB}{c}$的值分別為(  )
A.$\frac{π}{6}$,$\frac{1}{2}$B.$\frac{π}{3}$,$\frac{{\sqrt{3}}}{2}$C.$\frac{π}{3}$,$\frac{1}{2}$D.$\frac{π}{6}$,$\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.設(shè)函數(shù)f(x)=$\frac{lnx}{x}$,關(guān)于x的方程[f(x)]2+mf(x)-1=0有三個不同的實數(shù)解,則實數(shù)m的取值范圍是( 。
A.(-∞,e-$\frac{1}{e}$)B.(e-$\frac{1}{e}$,+∞)C.(0,e)D.(1,e)

查看答案和解析>>

同步練習(xí)冊答案