【題目】已知函數(shù)f(x)=x+xlnx,若k∈Z,且k(x﹣1)<f(x)對任意的x>1恒成立,則k的最大值為( )
A.2
B.3
C.4
D.5
科目:高中數(shù)學 來源: 題型:
【題目】設函數(shù)f(x)=Asin(ωx+φ)(A,ω,φ為常數(shù),且A>0,ω>0,0<φ<π)的部分圖象如圖所示.
(1)求A,ω,φ的值;
(2)設θ為銳角,且f(θ)=﹣ ,求f(θ﹣ )的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】點P在雙曲線 ﹣ =1(a>0,b>0)的右支上,其左、右焦點分別為F1 , F2 , 直線PF1與以坐標原點O為圓心、a為半徑的圓相切于點A,線段PF1的垂直平分線恰好過點F2 , 則該雙曲線的漸近線的斜率為 .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】△ABC中,角A,B,C所對的邊分別為a,b,c,向量 =( ,1), =(cosA+1,sinA),且 的值為2+ .
(1)求∠A的大;
(2)若a= ,cosB= ,求△ABC的面積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】若實數(shù)x,y滿足的約束條件 ,將一顆骰子投擲兩次得到的點數(shù)分別為a,b,則函數(shù)z=2ax+by在點(2,﹣1)處取得最大值的概率為( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,四邊形ABCD中,△BCD為正三角形,AD=AB=2, ,AC與BD中心O點,將△ACD沿邊AC折起,使D點至P點,已知PO與平面ABCD所成的角為60°.
(1)求證:平面PAC⊥平面PDB;
(2)求已知二面角A﹣PB﹣D的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設函數(shù).
(1)關(guān)于的不等式對一切恒成立,求實數(shù)的取值范圍;
(2)解關(guān)于的不等式;
(3)函數(shù)在區(qū)間上有零點,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知直線l的參數(shù)方程為 (t為參數(shù)),以坐標原點為極點,x軸的正半軸為極軸建立極坐標系,曲線C的極坐標方程為2ρ2﹣ρ2cos2θ=12.若曲線C的左焦點F在直線l上,且直線l與曲線C交于A,B兩點.
(1)求m的值并寫出曲線C的直角坐標方程;
(2)求 的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com