【題目】點P在雙曲線 =1(a>0,b>0)的右支上,其左、右焦點分別為F1 , F2 , 直線PF1與以坐標原點O為圓心、a為半徑的圓相切于點A,線段PF1的垂直平分線恰好過點F2 , 則該雙曲線的漸近線的斜率為

【答案】±
【解析】解:由線段PF1的垂直平分線恰好過點F2 ,
可得|PF2|=|F1F2|=2c,
由直線PF1與以坐標原點O為圓心、a為半徑的圓相切于點A,
可得|OA|=a,
設(shè)PF1的中點為M,由中位線定理可得|MF2|=2a,
在直角三角形PMF2中,可得|PM|= =2b,
即有|PF1|=4b,
由雙曲線的定義可得|PF1|﹣|PF2|=2a,
即4b﹣2c=2a,即2b=a+c,
即有4b2=(a+c)2
即4(c2﹣a2)=(a+c)2 ,
可得a= c,b= c,
即有雙曲線的漸近線方程y=± x,
該雙曲線的漸近線的斜率為±
所以答案是:±

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,設(shè)是橢圓的左焦點,點軸上的一點,點為橢圓的左、右頂點,已知,且

(1)求橢圓的標準方程;

(2)過點作直線交橢圓于兩點,試判定直線的斜率之和是否為定值,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】提高過江大橋的車輛通行能力可改善整個城市的交通狀況,在一般情況下,大橋上的車流速度v(單位:千米/小時)是車流密度x(單位:輛/千米)的函數(shù),當(dāng)橋上的車流密度達到200輛/千米時,造成堵塞,此時車流速度為0;當(dāng)車流密度不超過20輛/千米時,車流速度為60千米/小時,研究表明:當(dāng)20≤x≤200時,車流速度v是車流密度x的一次函數(shù).
(1)當(dāng)0≤x≤200時,求函數(shù)v(x)的表達式;
(2)當(dāng)車流密度x為多大時,車流量(單位時間內(nèi)通過橋上某觀測點的車輛數(shù),單位:輛/小時)f(x)=xv(x)可以達到最大,并求出最大值.(精確到1輛/小時).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】給出下列命題:

存在每個面都是直角三角形的四面體;

若三棱錐的三條側(cè)棱兩兩垂直,則其三個側(cè)面也兩兩垂直;

棱臺的側(cè)棱延長后交于一點;

用一個平面去截棱錐,棱錐底面和截面之間的部分是棱臺;

其中正確命題的個數(shù)是  

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(本小題滿分12分)已知等差數(shù)列{an}的前n項和為Sn,且a3=5,S15="225."

1)求數(shù)列{an}的通項an

2)設(shè)bn=+2n,求數(shù)列{bn}的前n項和Tn.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點A(0,-2),橢圓E (a>b>0)的離心率為,F是橢圓E的右焦點,直線AF的斜率為O為坐標原點.

(1)E的方程;

(2)設(shè)過點A的動直線lE相交于P,Q兩點.當(dāng)OPQ的面積最大時,求l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】有一個同學(xué)家開了一個奶茶店,他為了研究氣溫對熱奶茶銷售杯數(shù)的影響,從一季度中隨機選取5天,統(tǒng)計出氣溫與熱奶茶銷售杯數(shù),如表:

氣溫

0

4

12

19

27

熱奶茶銷售杯數(shù)

150

132

130

104

94

(Ⅰ)求熱奶茶銷售杯數(shù)關(guān)于氣溫的線性回歸方程精確到0.1),若某天的氣溫為,預(yù)測這天熱奶茶的銷售杯數(shù);

(Ⅱ)從表中的5天中任取兩天,求所選取兩天中至少有一天熱奶茶銷售杯數(shù)大于130的概率.

參考數(shù)據(jù):,.

參考公式:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=x+xlnx,若k∈Z,且k(x﹣1)<f(x)對任意的x>1恒成立,則k的最大值為(
A.2
B.3
C.4
D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知集合,集合

當(dāng)時,求;

,不等式恒成立,求實數(shù)a的取值范圍;

若“”是“”的必要條件,求實數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案